Ernest W. Valdez
University of New Mexico
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ernest W. Valdez.
Journal of Mammalogy | 2002
Antoinette J. Piaggio; Ernest W. Valdez; Michael A. Bogan; Greg S. Spicer
Abstract The systematic relationship between Myotis lucifugus carissima and Myotis occultus has been the subject of multiple studies. Although several studies, including a recent allozyme study, concluded that M. occultus is a subspecies of M. lucifugus, this view has not been universally accepted. We reexamined the relationships of these 2 taxa by sequencing the mitochondrial cytochrome-b (cyt-b) and cytochrome oxidase II (COII) genes of specimens from the allozyme study. The results suggest that M. occultus represents an evolutionarily distinct monophyletic lineage and provide support to arguments that M. occultus is a distinct species.
Monographs of The Western North American Naturalist | 2011
Thomas J. O'Shea; Paul M. Cryan; E. Apple Snider; Ernest W. Valdez; Laura E. Ellison; Daniel J. Neubaum
ABSTRACT. We determined the bat fauna at Mesa Verde National Park (Mesa Verde) in 2006 and 2007, characterized bat elevational distribution and reproduction, and investigated roosting habits of selected species. We captured 1996 bats of 15 species in mist nets set over water during 120 nights of sampling and recorded echolocation calls of an additional species. The bat fauna at Mesa Verde included every species of bat known west of the Great Plains in Colorado, except the little brown bat (Myotis lucifugus). Some species showed skewed sex ratios, primarily due to a preponderance of males. Thirteen species of bats reproduced at Mesa Verde. Major differences in spring precipitation between the 2 years of our study were associated with differences in reproductive rates and, in some species, with numbers of juveniles captured. Reduced reproductive effort during spring drought will have a greater impact on bat populations with the forecasted increase in aridity in much of western North America by models of global climate change. We radiotracked 46 bats of 5 species to roosts and describe the first-known maternity colonies of spotted bats (Euderma maculatum) in Colorado. All 5 species that we tracked to diurnal roosts relied almost exclusively on rock crevices rather than trees or snags, despite the presence of mature forests at Mesa Verde and the use of trees for roosts in similar forests elsewhere by some of these species. Comparisons with past bat surveys at Mesa Verde and in surrounding areas suggest no dramatic evidence for effects of recent stand-replacing fires on the composition of the bat community.
Journal of Mammalogy | 1999
Ernest W. Valdez; Jerry R. Choate; Michael A. Bogan; Terry L. Yates
The taxonomic status of the Arizona myotis ( Myotis occultus ) is uncertain. Although the taxon was described as a distinct species and currently is regarded as such by some authors, others have noted what they interpreted as intergradation with the little brown bat ( M. lucifugus carissima ) near the Colorado-New Mexico state line. In this study, we used protein electrophoresis to compare bats of these nominal taxa. We examined 20 loci from 142 specimens referable to M. occultus and M. lucifugus from New Mexico, Colorado, and Wyoming. Nine of the 20 loci were polymorphic. Results show that there were high similarities among samples, no fixed alleles, and minor divergence from Hardy-Weinberg equilibrium. Our results suggest that the two nominal taxa represent only one species and that M. occultus should be regarded as a subspecies of M. lucifugus .
Applied and Environmental Microbiology | 2017
Paris S. Hamm; Nicole A. Caimi; D. Northup; Ernest W. Valdez; Debbie C. Buecher; Christopher A. Dunlap; David P. Labeda; Shiloh Lueschow; Andrea Porras-Alfaro
ABSTRACT At least two-thirds of commercial antibiotics today are derived from Actinobacteria, more specifically from the genus Streptomyces. Antibiotic resistance and new emerging diseases pose great challenges in the field of microbiology. Cave systems, in which actinobacteria are ubiquitous and abundant, represent new opportunities for the discovery of novel bacterial species and the study of their interactions with emergent pathogens. White-nose syndrome is an invasive bat disease caused by the fungus Pseudogymnoascus destructans, which has killed more than six million bats in the last 7 years. In this study, we isolated naturally occurring actinobacteria from white-nose syndrome (WNS)-free bats from five cave systems and surface locations in the vicinity in New Mexico and Arizona, USA. We sequenced the 16S rRNA region and tested 632 isolates from 12 different bat species using a bilayer plate method to evaluate antifungal activity. Thirty-six actinobacteria inhibited or stopped the growth of P. destructans, with 32 (88.9%) actinobacteria belonging to the genus Streptomyces. Isolates in the genera Rhodococcus, Streptosporangium, Luteipulveratus, and Nocardiopsis also showed inhibition. Twenty-five of the isolates with antifungal activity against P. destructans represent 15 novel Streptomyces spp. based on multilocus sequence analysis. Our results suggest that bats in western North America caves possess novel bacterial microbiota with the potential to inhibit P. destructans. IMPORTANCE This study reports the largest collection of actinobacteria from bats with activity against Pseudogymnoascus destructans, the fungal causative agent of white-nose syndrome. Using multigene analysis, we discovered 15 potential novel species. This research demonstrates that bats and caves may serve as a rich reservoir for novel Streptomyces species with antimicrobial bioactive compounds.
Southwestern Naturalist | 2003
Dale W. Sparks; Ernest W. Valdez
Abstract We examined 56 fecal pellets from under a maternity colony of big free-tailed bats (Nyctinomops macrotis) in the Jemez Mountains of northern New Mexico. The most important food items, listed in order of decreasing percent volume, were Cicadellidae, leafhoppers (26.7% volume, 58.9% frequency); Ichneumonidae, Ichneumon wasps (19.3% volume, 35.7% frequency); and Lepidoptera, moths (17.2% volume, 82.1% frequency). Overall, the most important orders as prey consumed, listed by decreasing percent volume, were Homoptera (27.6% volume, 62.5% frequency), Hymenoptera (19.5% volume, 37.5% frequency), Lepidoptera (17.2% volume, 82.1% frequency), Hemiptera (11.7% volume, 37.5% frequency), and Diptera (10.6% volume, 50.0% frequency). Our study documents an unusually varied diet, as previous studies indicated that these bats fed almost exclusively on moths.
Pacific Science | 2011
Ernest W. Valdez; Gary J. Wiles; Thomas J. O'Shea
Abstract: The Pacific sheath-tailed bat (Emballonura semicaudata rotensis) and Mariana swiftlet (Aerodramus bartschi) are two rare insectivorous taxa restricted to the southern Mariana Islands in western Micronesia. It is believed that populations of both have dwindled because of impacts to their food resources. However, there is little information on the food habits of A. bartschi and none exists for E. s. rotensis. In an effort to better understand the feeding habits of both, we investigated their diets using guano analysis. Guano was collected from two roosts in caves during a 2-week period in June and July at the onset of the rainy season. Important orders of insects consumed (percentage volume) by bats roosting at one cave included hymenopterans (64%), coleopterans (10%), lepidopterans (8%), isopterans (8%), and psocopterans (5%), whereas those at a second cave included lepidopterans (45%), hymenopterans (41%), coleopterans (10%), and isopterans (5%). Swiftlets, which roosted in only one of the caves, fed mostly on hymenopterans (88%) and hemipterans (6%). Significant differences existed between the two taxa in several insect orders eaten, with E. s. rotensis consuming more lepidopterans and coleopterans and A. bartschi taking more hymenopterans and hemipterans. Within Hymenoptera, bats fed more on ichneumoideans, whereas swiftlets ate more formicid alates and chalicidoideans. This new information on the feeding habits of E. s. rotensis and A. bartschi provides insight on the complexity of their diets during June and July, and serves as baseline information for future studies and management of their habitat.
Acta Chiropterologica | 2011
Gary J. Wiles; Thomas J. O'Shea; David J. Worthington; Jacob A. Esselstyn; Ernest W. Valdez
Pacific sheath-tailed bats (Emballonura semicaudata rotensis) in the Mariana Islands declined greatly in abundance and distribution during the 20th century. The small island of Aguiguan now supports the only persisting population. We studied abundance and natural history of this population from 1995–2008. There was a likely population increase during the study, with 359–466 (minimum and maximum) bats counted at caves in 2008. Bats roosted only in caves, primarily those of relatively larger size. Bats were detected in only seven of 95 caves; three caves were always occupied when surveyed. One cave consistently had the largest colony ( ± SD = 333 ± 33.6 in 2008). Others held 1–64 bats. Cave environments showed no complexities in temperature or humidity. Preliminary observations indicate a litter size of one and the possibility of birthing timed to coincide with the transitional period leading into the rainy season (June–July). We review potential threats to E. s. rotensis on Aguiguan and make suggestions for conservation.
Journal of Mammalogy | 2013
Sara J. Oyler-McCance; Ernest W. Valdez; Thomas J. O'Shea; Jennifer A. Fike
Abstract Emballonura semicaudata occurs in the southwestern Pacific and populations on many islands have declined or disappeared. One subspecies (E. semicaudata rotensis) occurs in the Northern Mariana Islands, where it has been extirpated from all but 1 island (Aguiguan). We assessed genetic similarity between the last population of E. s. rotensis and 2 other subspecies, and examined genetic diversity on Aguiguan. We sampled 12 E. s. rotensis, sequenced them at 3 mitochondrial loci, and compared them with published sequences from 2 other subspecies. All 12 E. s. rotensis had identical sequences in each of the 3 regions. Using cytochrome-b (Cytb) data E. s. rotensis was sister to E. s. palauensis in a clade separate from E. s. semicaudata. 12S ribosomal RNA (12S) sequences grouped all E. s. semicaudata in 1 clade with E. s. rotensis in a clade by itself. Genetic distances among the 3 subspecies at Cytb were smallest between E. s. palauensis and E. s. rotensis. Distance between E. s. semicaudata and the other 2 subspecies was not different from the distance between E. s. semicaudata and the full species E. raffrayana. A similar relationship was found using the 12S data. These distances are larger than those typically reported for mammalian subspecies using Cytb sequence and within the range of sister species.
Western North American Naturalist | 2017
Michael A. Bogan; Paul M. Cryan; Christa D. Weise; Ernest W. Valdez
Abstract. Animals often migrate to exploit seasonally ephemeral food. Three species of nectar-feeding phyllostomid bats migrate north from Mexico into deserts of the United States each spring and summer to feed on blooms of columnar cactus and century plants (Agave spp.). However, the habitat needs of these important desert pollinators are poorly understood. We followed the nighttime movements of 2 species of long-nosed bats (Leptonycteris yerbabuenae and L. nivalis) in an area of late-summer sympatry at the northern edges of their migratory ranges. We radio-tracked bats in extreme southwestern New Mexico during 22 nights over 2 summers and acquired location estimates for 31 individuals. Both species cohabitated 2 major day roosts that were 30 km apart and in different mountain ranges, and individual bats sometimes moved between the roosts. Sampling was opportunistic and limited, but there were no obvious qualitative differences in observed patterns of movement between species or years, or among sex, age, and reproductive groups. Both species were observed foraging most often in the mountain range that had a relatively higher observed density of presumed food plants (Agave palmeri); when roosting in an adjacent mountain range, bats sometimes commuted >20 km one way to forage. Contrary to evidence indicating these species partition resources farther south in Mexico, our findings suggest that L. yerbabuenae and L. nivalis seasonally share common roost and food resources during late summer in this northern area of sympatry.
PeerJ | 2017
Ara S. Winter; Jennifer J.M. Hathaway; Jason C Kimble; Debbie C. Buecher; Ernest W. Valdez; Andrea Porras-Alfaro; Jesse M. Young; Kaitlyn J. H. Read; D. Northup
Microorganisms that reside on and in mammals, such as bats, have the potential to influence their host’s health and to provide defenses against invading pathogens. However, we have little understanding of the skin and fur bacterial microbiota on bats, or factors that influence the structure of these communities. The southwestern United States offers excellent sites for the study of external bat bacterial microbiota due to the diversity of bat species, the variety of abiotic and biotic factors that may govern bat bacterial microbiota communities, and the lack of the newly emergent fungal disease in bats, white-nose syndrome (WNS), in the southwest. To test these variables, we used 16S rRNA gene 454 pyrosequencing from swabs of external skin and fur surfaces from 163 bats from 13 species sampled from southeastern New Mexico to northwestern Arizona. Community similarity patterns, random forest models, and generalized linear mixed-effects models show that factors such as location (e.g., cave-caught versus surface-netted) and ecoregion are major contributors to the structure of bacterial communities on bats. Bats caught in caves had a distinct microbial community compared to those that were netted on the surface. Our results provide a first insight into the distribution of skin and fur bat bacteria in the WNS-free environment of New Mexico and Arizona. More importantly, it provides a baseline of bat external microbiota that can be explored for potential natural defenses against pathogens.