Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ernesto Lowy is active.

Publication


Featured researches published by Ernesto Lowy.


Proceedings of the National Academy of Sciences of the United States of America | 2012

The genome of melon (Cucumis melo L.)

Jordi Garcia-Mas; Andrej Benjak; Walter Sanseverino; Michael Bourgeois; Gisela Mir; Victor Gonzalez; Elizabeth Hénaff; Francisco Câmara; Luca Cozzuto; Ernesto Lowy; Tyler Alioto; Salvador Capella-Gutiérrez; José Blanca; Joaquín Cañizares; Pello Ziarsolo; Daniel Gonzalez-Ibeas; Luis Rodríguez-Moreno; Marcus Droege; Lei Du; Miguel Alvarez-Tejado; Belen Lorente-Galdos; Marta Melé; Luming Yang; Yiqun Weng; Arcadi Navarro; Tomas Marques-Bonet; Miguel A. Aranda; Fernando Nuez; Belén Picó; Toni Gabaldón

We report the genome sequence of melon, an important horticultural crop worldwide. We assembled 375 Mb of the double-haploid line DHL92, representing 83.3% of the estimated melon genome. We predicted 27,427 protein-coding genes, which we analyzed by reconstructing 22,218 phylogenetic trees, allowing mapping of the orthology and paralogy relationships of sequenced plant genomes. We observed the absence of recent whole-genome duplications in the melon lineage since the ancient eudicot triplication, and our data suggest that transposon amplification may in part explain the increased size of the melon genome compared with the close relative cucumber. A low number of nucleotide-binding site–leucine-rich repeat disease resistance genes were annotated, suggesting the existence of specific defense mechanisms in this species. The DHL92 genome was compared with that of its parental lines allowing the quantification of sequence variability in the species. The use of the genome sequence in future investigations will facilitate the understanding of evolution of cucurbits and the improvement of breeding strategies.


Nucleic Acids Research | 2016

Ensembl Genomes 2016: more genomes, more complexity

Paul J. Kersey; James E. Allen; Irina M. Armean; Sanjay Boddu; Bruce J. Bolt; Denise R. Carvalho-Silva; Mikkel Christensen; Paul Davis; Lee J. Falin; Christoph Grabmueller; Jay Humphrey; Arnaud Kerhornou; Julia Khobova; Naveen K. Aranganathan; Nicholas Langridge; Ernesto Lowy; Mark D. McDowall; Uma Maheswari; Michael Nuhn; Chuang Kee Ong; Bert Overduin; Michael Paulini; Helder Pedro; Emily Perry; Giulietta Spudich; Electra Tapanari; Brandon Walts; Gareth Williams; Marcela Tello–Ruiz; Joshua C. Stein

Ensembl Genomes (http://www.ensemblgenomes.org) is an integrating resource for genome-scale data from non-vertebrate species, complementing the resources for vertebrate genomics developed in the context of the Ensembl project (http://www.ensembl.org). Together, the two resources provide a consistent set of programmatic and interactive interfaces to a rich range of data including reference sequence, gene models, transcriptional data, genetic variation and comparative analysis. This paper provides an update to the previous publications about the resource, with a focus on recent developments. These include the development of new analyses and views to represent polyploid genomes (of which bread wheat is the primary exemplar); and the continued up-scaling of the resource, which now includes over 23 000 bacterial genomes, 400 fungal genomes and 100 protist genomes, in addition to 55 genomes from invertebrate metazoa and 39 genomes from plants. This dramatic increase in the number of included genomes is one part of a broader effort to automate the integration of archival data (genome sequence, but also associated RNA sequence data and variant calls) within the context of reference genomes and make it available through the Ensembl user interfaces.


Cell | 2016

Genetic Drivers of Epigenetic and Transcriptional Variation in Human Immune Cells

Lu Chen; Bing Ge; Francesco Paolo Casale; Louella Vasquez; Tony Kwan; Diego Garrido-Martín; Stephen Watt; Ying Yan; Kousik Kundu; Simone Ecker; Avik Datta; David C. Richardson; Frances Burden; Daniel Mead; Alice L. Mann; José María Fernández; Sophia Rowlston; Steven P. Wilder; Samantha Farrow; Xiaojian Shao; John J. Lambourne; Adriana Redensek; Cornelis A. Albers; Vyacheslav Amstislavskiy; Sofie Ashford; Kim Berentsen; Lorenzo Bomba; Guillaume Bourque; David Bujold; Stephan Busche

Summary Characterizing the multifaceted contribution of genetic and epigenetic factors to disease phenotypes is a major challenge in human genetics and medicine. We carried out high-resolution genetic, epigenetic, and transcriptomic profiling in three major human immune cell types (CD14+ monocytes, CD16+ neutrophils, and naive CD4+ T cells) from up to 197 individuals. We assess, quantitatively, the relative contribution of cis-genetic and epigenetic factors to transcription and evaluate their impact as potential sources of confounding in epigenome-wide association studies. Further, we characterize highly coordinated genetic effects on gene expression, methylation, and histone variation through quantitative trait locus (QTL) mapping and allele-specific (AS) analyses. Finally, we demonstrate colocalization of molecular trait QTLs at 345 unique immune disease loci. This expansive, high-resolution atlas of multi-omics changes yields insights into cell-type-specific correlation between diverse genomic inputs, more generalizable correlations between these inputs, and defines molecular events that may underpin complex disease risk.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Molecular signatures of plastic phenotypes in two eusocial insect species with simple societies

Solenn Patalano; Anna Vlasova; Chris Wyatt; Philip Ewels; Francisco Camara; Pedro Ferreira; Claire Asher; Tomasz P. Jurkowski; Anne Segonds-Pichon; Martin Bachman; Irene González-Navarrete; André E. Minoche; Felix Krueger; Ernesto Lowy; Marina Marcet-Houben; Jose Luis Rodriguez-Ales; Fabio S. Nascimento; Shankar Balasubramanian; Toni Gabaldón; James E. Tarver; Simon Andrews; Heinz Himmelbauer; William O. H. Hughes; Roderic Guigó; Wolf Reik; Seirian Sumner

Significance In eusocial insect societies, such as ants and some bees and wasps, phenotypes are highly plastic, generating alternative phenotypes (queens and workers) from the same genome. The greatest plasticity is found in simple insect societies, in which individuals can switch between phenotypes as adults. The genomic, transcriptional, and epigenetic underpinnings of such plasticity are largely unknown. In contrast to the complex societies of the honeybee, we find that simple insect societies lack distinct transcriptional differentiation between phenotypes and coherently patterned DNA methylomes. Instead, alternative phenotypes are largely defined by subtle transcriptional network organization. These traits may facilitate genomic plasticity. These insights and resources will stimulate new approaches and hypotheses that will help to unravel the genomic processes that create phenotypic plasticity. Phenotypic plasticity is important in adaptation and shapes the evolution of organisms. However, we understand little about what aspects of the genome are important in facilitating plasticity. Eusocial insect societies produce plastic phenotypes from the same genome, as reproductives (queens) and nonreproductives (workers). The greatest plasticity is found in the simple eusocial insect societies in which individuals retain the ability to switch between reproductive and nonreproductive phenotypes as adults. We lack comprehensive data on the molecular basis of plastic phenotypes. Here, we sequenced genomes, microRNAs (miRNAs), and multiple transcriptomes and methylomes from individual brains in a wasp (Polistes canadensis) and an ant (Dinoponera quadriceps) that live in simple eusocial societies. In both species, we found few differences between phenotypes at the transcriptional level, with little functional specialization, and no evidence that phenotype-specific gene expression is driven by DNA methylation or miRNAs. Instead, phenotypic differentiation was defined more subtly by nonrandom transcriptional network organization, with roles in these networks for both conserved and taxon-restricted genes. The general lack of highly methylated regions or methylome patterning in both species may be an important mechanism for achieving plasticity among phenotypes during adulthood. These findings define previously unidentified hypotheses on the genomic processes that facilitate plasticity and suggest that the molecular hallmarks of social behavior are likely to differ with the level of social complexity.


Nucleic Acids Research | 2012

PRGdb 2.0: towards a community-based database model for the analysis of R-genes in plants

Walter Sanseverino; Antonio Hermoso; Raffaella D’Alessandro; Anna Vlasova; Giuseppe Andolfo; Luigi Frusciante; Ernesto Lowy; Guglielmo Roma; Maria Raffaella Ercolano

The Plant Resistance Genes database (PRGdb; http://prgdb.org) is a comprehensive resource on resistance genes (R-genes), a major class of genes in plant genomes that convey disease resistance against pathogens. Initiated in 2009, the database has grown more than 6-fold to recently include annotation derived from recent plant genome sequencing projects. Release 2.0 currently hosts useful biological information on a set of 112 known and 104 310 putative R-genes present in 233 plant species and conferring resistance to 122 different pathogens. Moreover, the website has been completely redesigned with the implementation of Semantic MediaWiki technologies, which makes our repository freely accessed and easily edited by any scientists. To this purpose, we encourage plant biologist experts to join our annotation effort and share their knowledge on resistance-gene biology with the rest of the scientific community.


Genome Biology | 2016

Genome and transcriptome analysis of the Mesoamerican common bean and the role of gene duplications in establishing tissue and temporal specialization of genes

Anna Vlasova; Salvador Capella-Gutiérrez; Martha Rendón-Anaya; Miguel Hernández-Oñate; André E. Minoche; Ionas Erb; Francisco Câmara; Pablo Prieto-Barja; André Corvelo; Walter Sanseverino; Gastón Westergaard; Juliane C. Dohm; Georgios J. Pappas; Soledad Saburido-Álvarez; Darek Kedra; Irene González; Luca Cozzuto; Jèssica Gómez-Garrido; María A. Aguilar-Morón; Nuria Andreu; O. Mario Aguilar; Jordi Garcia-Mas; Maik Zehnsdorf; Martin P. Vazquez; Alfonso Delgado-Salinas; Luis Delaye; Ernesto Lowy; Alejandro Mentaberry; Rosana Pereira Vianello-Brondani; José Luis García

BackgroundLegumes are the third largest family of angiosperms and the second most important crop class. Legume genomes have been shaped by extensive large-scale gene duplications, including an approximately 58 million year old whole genome duplication shared by most crop legumes.ResultsWe report the genome and the transcription atlas of coding and non-coding genes of a Mesoamerican genotype of common bean (Phaseolus vulgaris L., BAT93). Using a comprehensive phylogenomics analysis, we assessed the past and recent evolution of common bean, and traced the diversification of patterns of gene expression following duplication. We find that successive rounds of gene duplications in legumes have shaped tissue and developmental expression, leading to increased levels of specialization in larger gene families. We also find that many long non-coding RNAs are preferentially expressed in germ-line-related tissues (pods and seeds), suggesting that they play a significant role in fruit development. Our results also suggest that most bean-specific gene family expansions, including resistance gene clusters, predate the split of the Mesoamerican and Andean gene pools.ConclusionsThe genome and transcriptome data herein generated for a Mesoamerican genotype represent a counterpart to the genomic resources already available for the Andean gene pool. Altogether, this information will allow the genetic dissection of the characters involved in the domestication and adaptation of the crop, and their further implementation in breeding strategies for this important crop.


Nature Communications | 2016

Increased DNA methylation variability in type 1 diabetes across three immune effector cell types

Dirk S. Paul; Andrew E. Teschendorff; Mary A N Dang; Robert Lowe; Mohammed I. Hawa; Simone Ecker; Huriya Beyan; Stephanie Cunningham; Alexandra R. Fouts; Anita Ramelius; Frances Burden; Samantha Farrow; Sophia Rowlston; Karola Rehnström; Mattia Frontini; Kate Downes; Stephan Busche; Warren Cheung; Bing Ge; Marie Michelle Simon; David Bujold; Tony Kwan; Guillaume Bourque; Avik Datta; Ernesto Lowy; Laura Clarke; Paul Flicek; Emanuele Libertini; Simon Heath; Marta Gut

The incidence of type 1 diabetes (T1D) has substantially increased over the past decade, suggesting a role for non-genetic factors such as epigenetic mechanisms in disease development. Here we present an epigenome-wide association study across 406,365 CpGs in 52 monozygotic twin pairs discordant for T1D in three immune effector cell types. We observe a substantial enrichment of differentially variable CpG positions (DVPs) in T1D twins when compared with their healthy co-twins and when compared with healthy, unrelated individuals. These T1D-associated DVPs are found to be temporally stable and enriched at gene regulatory elements. Integration with cell type-specific gene regulatory circuits highlight pathways involved in immune cell metabolism and the cell cycle, including mTOR signalling. Evidence from cord blood of newborns who progress to overt T1D suggests that the DVPs likely emerge after birth. Our findings, based on 772 methylomes, implicate epigenetic changes that could contribute to disease pathogenesis in T1D.


Bioinformatics | 2011

TEQC: an R package for quality control in target capture experiments

Manuela Hummel; Sarah Bonnin; Ernesto Lowy; Guglielmo Roma

UNLABELLED TEQC is an R/Bioconductor package for quality assessment of target enrichment experiments. Quality measures comprise specificity and sensitivity of the capture, enrichment, per-target read coverage and its relation to hybridization probe characteristics, coverage uniformity and reproducibility, and read duplicate analysis. Several diagnostic plots allow visual inspection of the data quality. AVAILABILITY AND IMPLEMENTATION TEQC is implemented in the R language (version >2.12.0) and is available as a Bioconductor package for Linux, Windows and MacOS from www.bioconductor.org.


Genome Biology | 2016

Extreme genomic erosion after recurrent demographic bottlenecks in the highly endangered Iberian lynx

Federico Abascal; André Corvelo; Fernando Cruz; José Luis Villanueva-Cañas; Anna Vlasova; Marina Marcet-Houben; Begoña Martínez-Cruz; Jade Yu Cheng; Pablo Prieto; Víctor Quesada; Javier Quilez; Gang Li; F. García; Miriam Rubio-Camarillo; Leonor Frias; Paolo Ribeca; Salvador Capella-Gutiérrez; Jose Manuel Rodriguez; Francisco Câmara; Ernesto Lowy; Luca Cozzuto; Ionas Erb; Michael L. Tress; Jose Luis Rodriguez-Ales; Jorge Ruiz-Orera; Ferran Reverter; Mireia Casas-Marce; Laura Soriano; Javier R. Arango; Sophia Derdak

BackgroundGenomic studies of endangered species provide insights into their evolution and demographic history, reveal patterns of genomic erosion that might limit their viability, and offer tools for their effective conservation. The Iberian lynx (Lynx pardinus) is the most endangered felid and a unique example of a species on the brink of extinction.ResultsWe generate the first annotated draft of the Iberian lynx genome and carry out genome-based analyses of lynx demography, evolution, and population genetics. We identify a series of severe population bottlenecks in the history of the Iberian lynx that predate its known demographic decline during the 20th century and have greatly impacted its genome evolution. We observe drastically reduced rates of weak-to-strong substitutions associated with GC-biased gene conversion and increased rates of fixation of transposable elements. We also find multiple signatures of genetic erosion in the two remnant Iberian lynx populations, including a high frequency of potentially deleterious variants and substitutions, as well as the lowest genome-wide genetic diversity reported so far in any species.ConclusionsThe genomic features observed in the Iberian lynx genome may hamper short- and long-term viability through reduced fitness and adaptive potential. The knowledge and resources developed in this study will boost the research on felid evolution and conservation genomics and will benefit the ongoing conservation and management of this emblematic species.


Cell Reports | 2016

Distinct Trends of DNA Methylation Patterning in the Innate and Adaptive Immune Systems.

Ronald Schuyler; Angelika Merkel; Emanuele Raineri; Lucia Altucci; Edo Vellenga; Joost H.A. Martens; Farzin Pourfarzad; Taco W. Kuijpers; Frances Burden; Samantha Farrow; Kate Downes; Willem H. Ouwehand; Laura Clarke; Avik Datta; Ernesto Lowy; Paul Flicek; Mattia Frontini; Hendrik G. Stunnenberg; José I. Martín-Subero; Ivo Gut; Simon Heath

Summary DNA methylation and the localization and post-translational modification of nucleosomes are interdependent factors that contribute to the generation of distinct phenotypes from genetically identical cells. With 112 whole-genome bisulfite sequencing datasets from the BLUEPRINT Epigenome Project, we analyzed the global development of DNA methylation patterns during lineage commitment and maturation of a range of immune system effector cells and the cancers that arise from them. We show clear trends in methylation patterns that are distinct in the innate and adaptive arms of the human immune system, both globally and in relation to consistently positioned nucleosomes. Most notable are a progressive loss of methylation in developing lymphocytes and the consistent occurrence of non-CG methylation in specific cell types. Cancer samples from the two lineages are further polarized, suggesting the involvement of distinct lineage-specific epigenetic mechanisms. We anticipate broad utility for this resource as a basis for further comparative epigenetic analyses.

Collaboration


Dive into the Ernesto Lowy's collaboration.

Top Co-Authors

Avatar

Avik Datta

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar

Anna Vlasova

Pompeu Fabra University

View shared research outputs
Top Co-Authors

Avatar

Simon Heath

Pompeu Fabra University

View shared research outputs
Top Co-Authors

Avatar

Laura Clarke

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar

Paul Flicek

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marta Gut

Pompeu Fabra University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Walter Sanseverino

University of Naples Federico II

View shared research outputs
Researchain Logo
Decentralizing Knowledge