Ernesto Palmero-Soler
Université libre de Bruxelles
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ernesto Palmero-Soler.
NeuroImage | 2011
Ana Maria Cebolla; Ernesto Palmero-Soler; Bernard Dan; Guy Cheron
The N30 component of somatosensory evoked potentials has been recognized as a crucial index of brain sensorimotor processing and has been increasingly used clinically. Previously, we have shown that the N30 is accompanied by both an increase of the power spectrum of the ongoing beta-gamma EEG (event related synchronization, ERS) and by a reorganization (phase-locking) of the spontaneous phase of this rhythm (inter-trials coherency, ITC). In order to localize its sources taking into account both the phasic and oscillatory aspects of the phenomenon, we here apply swLORETA methods on averaged signals of the event-related potential (ERP) from a 128 scalp-electrodes array in time domain and also on raw EEG signals in frequency domain at the N30 peak latency. We demonstrate that the two different mechanisms that generate the N30 component power increase (ERS) and phase locking (ITC) across EEG trials are spatially localized in overlapping areas in the precentral cortex, namely the motor cortex (BA4) and the premotor cortex (BA6). From this common region, the generator of the N30 event-related potential expands toward the posterior part of BA4, the anterior part of BA6 and the prefrontal cortex (BA9). These latter areas also present significant ITC sources in the beta-gamma frequency range, but without significant power increase of this rhythm. This demonstrates that N30 results from network activity that depends on distinct oscillating and phasic generators localized in the frontal cortex.
Human Brain Mapping | 2009
Ana Maria Cebolla; Caty De Saedeleer; Ana Bengoetxea; Françoise Leurs; Costantino Balestra; Pablo D'Alcantara; Ernesto Palmero-Soler; Bernard Dan; Guy Cheron
Evoked potential modulation allows the study of dynamic brain processing. The mechanism of movement gating of the frontal N30 component of somatosensory evoked potentials (SEP) produced by the stimulation of the median nerve at wrist remains to be elucidated. At rest, a power enhancement and a significant phase‐locking of the electroencephalographic (EEG) oscillation in the beta/gamma range (25–35 Hz) are related to the emergence of the N30. The latter was also perfectly identified in presence of pure phase‐locking situation. Here, we investigated the contribution of these rhythmic activities to the specific gating of the N30 component during movement. We demonstrated that concomitant execution of finger movement of the stimulated hand impinges such temporal concentration of the ongoing beta/gamma EEG oscillations and abolishes the N30 component throughout their large topographical extent on the scalp. This also proves that the phase‐locking phenomenon is one of the main actors for the N30 generation. These findings could be explained by the involvement of neuronal populations of the sensorimotor cortex and other related areas, which are unable to respond to the phasic sensory activation and to phase‐lock their firing discharges to the external sensory input during the movement. This new insight into the contribution of phase‐locked oscillation in the emergence of the N30 and in its gating behavior calls for a reappraisal of fundamental and clinical interpretation of the frontal N30 component. Hum Brain Mapp 2009.
PLOS ONE | 2014
Guy Cheron; Axelle Leroy; Ernesto Palmero-Soler; Caty De Saedeleer; Ana Bengoetxea; Ana Maria Cebolla; Manuel Vidal; Bernard Dan; Alain Berthoz; Joseph McIntyre
Visual perception is not only based on incoming visual signals but also on information about a multimodal reference frame that incorporates vestibulo-proprioceptive input and motor signals. In addition, top-down modulation of visual processing has previously been demonstrated during cognitive operations including selective attention and working memory tasks. In the absence of a stable gravitational reference, the updating of salient stimuli becomes crucial for successful visuo-spatial behavior by humans in weightlessness. Here we found that visually-evoked potentials triggered by the image of a tunnel just prior to an impending 3D movement in a virtual navigation task were altered in weightlessness aboard the International Space Station, while those evoked by a classical 2D-checkerboard were not. Specifically, the analysis of event-related spectral perturbations and inter-trial phase coherency of these EEG signals recorded in the frontal and occipital areas showed that phase-locking of theta-alpha oscillations was suppressed in weightlessness, but only for the 3D tunnel image. Moreover, analysis of the phase of the coherency demonstrated the existence on Earth of a directional flux in the EEG signals from the frontal to the occipital areas mediating a top-down modulation during the presentation of the image of the 3D tunnel. In weightlessness, this fronto-occipital, top-down control was transformed into a diverging flux from the central areas toward the frontal and occipital areas. These results demonstrate that gravity-related sensory inputs modulate primary visual areas depending on the affordances of the visual scene.
NeuroImage | 2014
Ana Maria Cebolla; Ernesto Palmero-Soler; Bernard Dan; Guy Cheron
The N30 component of the somatosensory evoked potential is known to be modulated by sensory interference, motor action, movement ideation and observation. We introduce a new paradigm in which the observation task of another persons hand movement triggers the somatosensory stimulus, inducing the N30 response in participants. In order to identify the possible contribution of the mirror neuron network (MNN) to this early sensorimotor processing, we analyzed the N30 topography, the event-related spectral perturbation and the inter-trial coherence on single electroencephalogram (EEG) trials, and we applied swLORETA to localize the N30 sources implicated in the time-frequency domain at rest and during observation, as well as the generators differentiating these two contextual brain states. We found that N30 amplitude increase correlated with increased contralateral precentral alpha, frontal beta, and contralateral frontal gamma power spectrum, and with central and precentral alpha and parietal beta phase-locking of ongoing EEG signals. We demonstrate specific activation of the contralateral post-central and parietal cortex where the angular gyrus (BA39), an important MNN node, is implicated in this enhancement during observation. We conclude that this part of the MNN, involved in proprioceptive processing and more complex body-action representations, is already active prior to somatosensory input and may enhance N30.
Neuroscience | 2014
Perrine Bocquillon; J.-L. Bourriez; Ernesto Palmero-Soler; Behnam Molaee-Ardekani; Philippe Derambure; Kathy Dujardin
The N2 subcomponents of event-related potentials are known to reflect early attentional processes. The anterior N2 may reflect conflict monitoring, whereas the posterior N2 may be involved in target detection. The aim of this study was to identify the brain areas involved in the generation of the N2 subcomponents, in order to define the spatiotemporal dynamics of these attentional processes. We recorded 128-channel electroencephalograms in 15 healthy controls performing a three-stimulus visual oddball task and identified standard-, distracter- and target-elicited N2 components. Individual N2 sources were localized using standardized-weighted-low-resolution-electromagnetic-tomography (swLORETA). Comparative analyses were performed with a non-parametric permutation technique. Common N2 generators were observed in the Brodmann area (BA) 24 of the anterior cingulate cortex (ACC). The posterior cingulate cortex and the central precuneus were more involved in distracter processing, whereas the anterior precuneus and BA 32 of the ACC were target-specific. In accordance with previous demonstration of the frontoparietal cortexs critical role in attentional processes, these new data shed light on the ACCs role in conflict monitoring and its interaction with other median and frontoparietal structures in early attentional processes.
PLOS ONE | 2012
Perrine Bocquillon; Jean-Louis Bourriez; Ernesto Palmero-Soler; A Destée; L. Defebvre; Philippe Derambure; Kathy Dujardin
Background The selection of task-relevant information requires both the focalization of attention on the task and resistance to interference from irrelevant stimuli. Both mechanisms rely on a dorsal frontoparietal network, while focalization additionally involves a ventral frontoparietal network. The role of subcortical structures in attention is less clear, despite the fact that the striatum interacts significantly with the frontal cortex via frontostriatal loops. One means of investigating the basal ganglias contributions to attention is to examine the features of P300 components (i.e. amplitude, latency, and generators) in patients with basal ganglia damage (such as in Parkinsons disease (PD), in which attention is often impaired). Three-stimulus oddball paradigms can be used to study distracter-elicited and target-elicited P300 subcomponents. Methodology/Principal Findings In order to compare distracter- and target-elicited P300 components, high-density (128-channel) electroencephalograms were recorded during a three-stimulus visual oddball paradigm in 15 patients with early PD and 15 matched healthy controls. For each subject, the P300 sources were localized using standardized weighted low-resolution electromagnetic tomography (swLORETA). Comparative analyses (one-sample and two-sample t-tests) were performed using SPM5® software. The swLORETA analyses showed that PD patients displayed fewer dorsolateral prefrontal (DLPF) distracter-P300 generators but no significant differences in target-elicited P300 sources; this suggests dysfunction of the DLPF cortex when the executive frontostriatal loop is disrupted by basal ganglia damage. Conclusions/Significance Our results suggest that the cortical attention frontoparietal networks (mainly the dorsal one) are modulated by the basal ganglia. Disruption of this network in PD impairs resistance to distracters, which results in attention disorders.
Neuroscience | 2018
Axelle Leroy; Géraldine Petit; David Zarka; Ana Maria Cebolla; Ernesto Palmero-Soler; J. Strul; Bernard Dan; Paul Verbanck; Guy Cheron
In contrast to childhood ADHD that is characterized by inattention, impulsivity and hyperactivity, most adults with ADHD predominantly exhibit inattention. We used a new oddball paradigm using implicit navigational images and analyzed EEG dynamics with swLORETA inverse modeling of the evoked potential generators to study cortical processing in adults with ADHD and age-matched controls. In passive observation, we demonstrated that P350 amplitude, alpha-beta oscillation event-related synchronization (ERS) anticipation, and beta event-related desynchronization (ERD) were significantly smaller in ADHD. In the active condition, P100 duration was reduced and N140 amplitude increased for both deviant and frequent conditions in the ADHD. Alpha ERS and delta-theta ERS were reduced in the ADHD in the deviant condition. The left somatosensory area (BA2) and the right parietal lobe (BA31, BA40) contributed more to the P100 generators in the control than in the ADHD group, while the left frontal lobe (BA10) contributed more to the P100 generators in the ADHD. The left inferior parietal lobe (BA40) contributed more to the N140 generators in the control than the ADHD group while the right posterior cingulate (BA30) contributed more to the N140 generators in the ADHD. These findings reinforce the notion that earlier cortical stages of visual processing are compromised in adult ADHD by inducing the emergence of different even-related potential generators and EEG dynamics in ADHD. Considering that classical approaches for ADHD diagnosis are based on qualitative clinical investigation possibly biased by subjectivity, EEG analysis is another objective tool that might contribute to diagnosis, future neurofeedback or brain stimulation therapies.
Frontiers in Psychology | 2017
Ana Maria Cebolla; Ernesto Palmero-Soler; Axelle Leroy; Guy Cheron
In order to characterize the neural generators of the brain oscillations related to motor imagery (MI), we investigated the cortical, subcortical, and cerebellar localizations of their respective electroencephalogram (EEG) spectral power and phase locking modulations. The MI task consisted in throwing a ball with the dominant upper limb while in a standing posture, within an ecological virtual reality (VR) environment (tennis court). The MI was triggered by the visual cues common to the control condition, during which the participant remained mentally passive. As previously developed, our paradigm considers the confounding problem that the reference condition allows two complementary analyses: one which uses the baseline before the occurrence of the visual cues in the MI and control resting conditions respectively; and the other which compares the analog periods between the MI and the control resting-state conditions. We demonstrate that MI activates specific, complex brain networks for the power and phase modulations of the EEG oscillations. An early (225 ms) delta phase-locking related to MI was generated in the thalamus and cerebellum and was followed (480 ms) by phase-locking in theta and alpha oscillations, generated in specific cortical areas and the cerebellum. Phase-locking preceded the power modulations (mainly alpha–beta ERD), whose cortical generators were situated in the frontal BA45, BA11, BA10, central BA6, lateral BA13, and posterior cortex BA2. Cerebellar-thalamic involvement through phase-locking is discussed as an underlying mechanism for recruiting at later stages the cortical areas involved in a cognitive role during MI.
PLOS ONE | 2015
Perrine Bocquillon; Jean-Louis Bourriez; Ernesto Palmero-Soler; Luc Defebvre; Philippe Derambure; Kathy Dujardin
Introduction The selection of task-relevant information requires both the focalization of attention on the task and resistance to interference from irrelevant stimuli. A previous study using the P3 component of the event-related potentials suggested that a reduced ability to resist interference could be responsible for attention disorders at early stages of Parkinson’s disease (PD), with a possible role of the dorsolateral prefrontal cortex (DLPFC). Methods Our objective was to better determine the origin of this impairment, by studying an earlier ERP component, the N2, and its subcomponents, as they reflect early inhibition processes and as they are known to have sources in the anterior cingulate cortex (ACC), which is involved together with the DLPFC in inhibition processes. Fifteen early-stage PD patients and 15 healthy controls (HCs) performed a three-stimulus visual oddball paradigm, consisting in detecting target inputs amongst standard stimuli, while resisting interference from distracter ones. A 128-channel electroencephalogram was recorded during this task and the generators of the N2 subcomponents were identified using standardized weighted low-resolution electromagnetic tomography (swLORETA). Results PD patients displayed fewer N2 generators than HCs in both the DLPFC and the ACC, for all types of stimuli. In contrast to controls, PD patients did not show any differences between their generators for different N2 subcomponents. Conclusion Our data suggest that impaired inhibition in PD results from dysfunction of the DLPFC and the ACC during the early stages of attentional processes.
International Review of Neurobiology | 2009
Guy Cheron; Ana Maria Cebolla; Mathieu Petieau; Ana Bengoetxea; Ernesto Palmero-Soler; Axelle Leroy; Bernard Dan