Ernie de Boer
Erasmus University Rotterdam
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ernie de Boer.
Proceedings of the National Academy of Sciences of the United States of America | 2003
Ernie de Boer; Patrick Rodriguez; Edgar Bonte; Jeroen Krijgsveld; Eleni Katsantoni; Albert J. R. Heck; Frank Grosveld; John Strouboulis
Proteomic approaches require simple and efficient protein purification methodologies that are amenable to high throughput. Biotinylation is an attractive approach for protein complex purification due to the very high affinity of avidin/streptavidin for biotinylated templates. Here, we describe an approach for the single-step purification of transcription factor complex(es) based on specific in vivo biotinylation. We expressed the bacterial BirA biotin ligase in mammalian cells and demonstrated very efficient biotinylation of a hematopoietic transcription factor bearing a small (23-aa) artificial peptide tag. Biotinylation of the tagged transcription factor altered neither the factors protein interactions or DNA binding properties in vivo nor its subnuclear distribution. Using this approach, we isolated the biotin-tagged transcription factor and at least one other known interacting protein from crude nuclear extracts by direct binding to streptavidin beads. Finally, this method works efficiently in transgenic mice, thus raising the prospect of using biotinylation tagging in protein complex purification directly from animal tissues. Therefore, BirA-mediated biotinylation of tagged proteins provides the basis for the single-step purification of proteins from mammalian cells.
Cell | 1996
Eric Milot; John Strouboulis; Tolleiv Trimborn; Mark Wijgerde; Ernie de Boer; An Langeveld; Kian Tan-Un; Wilma Vergeer; Nikos Yannoutsos; Frank Grosveld; Peter Fraser
Locus control regions (LCRs) are responsible for initiating and maintaining a stable tissue-specific open chromatin structure of a locus. In transgenic mice, LCRs confer high level expression on linked genes independent of position in the mouse genome. Here we show that an incomplete LCR loses this property when integrated into heterochromatic regions. Two disruption mechanisms were observed. One is classical position-effect variegation, resulting in continuous transcription in a clonal subpopulation of cells. The other is a novel mechanism resulting in intermittent gene transcription in all cells. We conclude that only a complete LCR fully overcomes heterochromatin silencing and that it controls the level of transcription by ensuring activity in all cells at all times rather than directly controlling the rate of transcription.
The EMBO Journal | 2005
Patrick Rodriguez; Edgar Bonte; Jeroen Krijgsveld; Katarzyna E. Kolodziej; Boris Guyot; Albert J. R. Heck; Paresh Vyas; Ernie de Boer; Frank Grosveld; John Strouboulis
GATA‐1 is essential for the generation of the erythroid, megakaryocytic, eosinophilic and mast cell lineages. It acts as an activator and repressor of different target genes, for example, in erythroid cells it represses cell proliferation and early hematopoietic genes while activating erythroid genes, yet it is not clear how both of these functions are mediated. Using a biotinylation tagging/proteomics approach in erythroid cells, we describe distinct GATA‐1 interactions with the essential hematopoietic factor Gfi‐1b, the repressive MeCP1 complex and the chromatin remodeling ACF/WCRF complex, in addition to the known GATA‐1/FOG‐1 and GATA‐1/TAL‐1 complexes. Importantly, we show that FOG‐1 mediates GATA‐1 interactions with the MeCP1 complex, thus providing an explanation for the overlapping functions of these two factors in erythropoiesis. We also show that subsets of GATA‐1 gene targets are bound in vivo by distinct complexes, thus linking specific GATA‐1 partners to distinct aspects of its functions. Based on these findings, we suggest a model for the different roles of GATA‐1 in erythroid differentiation.
Genes & Development | 2010
Eric Soler; Charlotte Andrieu-Soler; Ernie de Boer; Jan Christian Bryne; Supat Thongjuea; Ralph Stadhouders; Robert-Jan Palstra; Mary Stevens; Christel Kockx; Wilfred van IJcken; Jun Hou; Christine Steinhoff; Erikjan Rijkers; Boris Lenhard; Frank Grosveld
One of the complexes formed by the hematopoietic transcription factor Gata1 is a complex with the Ldb1 (LIM domain-binding protein 1) and Tal1 proteins. It is known to be important for the development and differentiation of the erythroid cell lineage and is thought to be implicated in long-range interactions. Here, the dynamics of the composition of the complex-in particular, the binding of the negative regulators Eto2 and Mtgr1-are studied, in the context of their genome-wide targets. This shows that the complex acts almost exclusively as an activator, binding a very specific combination of sequences, with a positioning relative to transcription start site, depending on the type of the core promoter. The activation is accompanied by a net decrease in the relative binding of Eto2 and Mtgr1. A Chromosome Conformation Capture sequencing (3C-seq) assay also shows that the binding of the Ldb1 complex marks genomic interaction sites in vivo. This establishes the Ldb1 complex as a positive regulator of the final steps of erythroid differentiation that acts through the shedding of negative regulators and the active interaction between regulatory sequences.
The EMBO Journal | 1998
Joost Gribnau; Ernie de Boer; Tolleiv Trimborn; Mark Wijgerde; Eric Milot; Frank Grosveld; Peter Fraser
We have used a kinetic analysis to distinguish possible mechanisms of activation of transcription of the different genes in the human β globin locus. Based on in situ studies at the single‐cell level we have previously suggested a dynamic mechanism of single genes alternately interacting with the locus control region (LCR) to activate transcription. However, those steady‐state experiments did not allow a direct measurement of the dynamics of the mechanism and the presence of loci with in situ primary transcript signals from two β‐like genes in cis has left open the possibility that multiple genes in the locus could initiate transcription simultaneously. Kinetic assays involving removal of a block to transcription elongation in conjunction with RNA FISH show that multiple β gene primary transcript signals in cis represent a transition between alternating transcriptional periods of single genes, supporting a dynamic interaction mechanism.
The EMBO Journal | 2012
Ralph Stadhouders; Supat Thongjuea; Charlotte Andrieu-Soler; Robert-Jan Palstra; Jan Christian Bryne; Anita van den Heuvel; Mary Stevens; Ernie de Boer; Christel Kockx; Antoine van der Sloot; Mirjam C. G. N. van den Hout; Wilfred van IJcken; Dirk Eick; Boris Lenhard; Frank Grosveld; Eric Soler
The key haematopoietic regulator Myb is essential for coordinating proliferation and differentiation. ChIP‐Sequencing and Chromosome Conformation Capture (3C)‐Sequencing were used to characterize the structural and protein‐binding dynamics of the Myb locus during erythroid differentiation. In proliferating cells expressing Myb, enhancers within the Myb‐Hbs1l intergenic region were shown to form an active chromatin hub (ACH) containing the Myb promoter and first intron. This first intron was found to harbour the transition site from transcription initiation to elongation, which takes place around a conserved CTCF site. Upon erythroid differentiation, Myb expression is downregulated and the ACH destabilized. We propose a model for Myb activation by distal enhancers dynamically bound by KLF1 and the GATA1/TAL1/LDB1 complex, which primarily function as a transcription elongation element through chromatin looping.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Benoît-Joseph Laventie; Hendrik Jan Rademaker; Maher Saleh; Ernie de Boer; Rick Janssens; Tristan Bourcier; Audrey Subilia; Luc Marcellin; Rien van Haperen; Joyce H. G. Lebbink; Tao Chen; Gilles Prévost; Frank Grosveld; Dubravka Drabek
Panton–Valentine leukocidin (PVL) is a pore-forming toxin associated with current outbreaks of community-associated methicillin-resistant strains and implicated directly in the pathophysiology of Staphylococcus aureus-related diseases. Humanized heavy chain-only antibodies (HCAb) were generated against S. aureus PVL from immunized transgenic mice to neutralize toxin activity. The active form of PVL consists of the two components, LukS-PV and LukF-PV, which induce osmotic lysis following pore formation in host defense cells. One anti–LukS-PV HCAb, three anti–LukF-PV HCAbs with affinities in the nanomolar range, and one engineered tetravalent bispecific HCAb were tested in vitro and in vivo, and all prevented toxin binding and pore formation. Anti–LukS-PV HCAb also binds to γ-hemolysin C (HlgC) and inhibits HlgC/HlgB pore formation. Experiments in vivo in a toxin-induced rabbit endophthalmitis model showed that these HCAbs inhibit inflammatory reactions and tissue destruction, with the tetravalent bispecific HCAb performing best. Our findings show the therapeutic potential of HCAbs, and in particular, bispecific antibodies.
BMC Molecular Biology | 2009
Katarzyna E. Kolodziej; Farzin Pourfarzad; Ernie de Boer; Sanja Krpic; Frank Grosveld; John Strouboulis
BackgroundChromatin immunoprecipitation (ChIP) assays coupled to genome arrays (Chip-on-chip) or massive parallel sequencing (ChIP-seq) lead to the genome wide identification of binding sites of chromatin associated proteins. However, the highly variable quality of antibodies and the availability of epitopes in crosslinked chromatin can compromise genomic ChIP outcomes. Epitope tags have often been used as more reliable alternatives. In addition, we have employed protein in vivo biotinylation tagging as a very high affinity alternative to antibodies. In this paper we describe the optimization of biotinylation tagging for ChIP and its coupling to a known epitope tag in providing a reliable and efficient alternative to antibodies.ResultsUsing the biotin tagged erythroid transcription factor GATA-1 as example, we describe several optimization steps for the application of the high affinity biotin streptavidin system in ChIP. We find that the omission of SDS during sonication, the use of fish skin gelatin as blocking agent and choice of streptavidin beads can lead to significantly improved ChIP enrichments and lower background compared to antibodies. We also show that the V5 epitope tag performs equally well under the conditions worked out for streptavidin ChIP and that it may suffer less from the effects of formaldehyde crosslinking.ConclusionThe combined use of the very high affinity biotin tag with the less sensitive to crosslinking V5 tag provides for a flexible ChIP platform with potential implications in ChIP sequencing outcomes.
Methods of Molecular Biology | 2006
Patrick Rodriguez; Harald Braun; Katarzyna E. Kolodziej; Ernie de Boer; Jennifer M. Campbell; Edgar Bonte; Frank Grosveld; Sjaak Philipsen; John Strouboulis
Efficient tagging methodologies are an integral aspect of protein complex characterization by proteomic approaches. Owing to the very high affinity of biotin for avidin and streptavidin, biotinylation tagging offers an attractive approach for the efficient purification of protein complexes. The very high affinity of the biotin/(strept)avidin system also offers the potential for the single-step capture of lower abundance protein complexes, such as transcription factor complexes. The identification of short peptide tags that are efficiently biotinylated by the bacterial BirA biotin ligase led to an approach for the single-step purification of transcription factor complexes by specific in vivo biotinylation tagging. A short sequence tag fused N-terminally to the transcription factor of interest is very efficiently biotinylated by BirA coexpressed in the same cells, as was demonstrated by the tagging of the essential hematopoietic transcription factor GATA-1. The direct binding to streptavidin of biotinylated GATA-1 in nuclear extracts resulted in the single-step capture of the tagged factor and associated proteins, which were eluted and identified by mass spectrometry. This led to the characterization of several distinct GATA-1 complexes with other transcription factors and chromatin remodeling cofactors, which are involved in activation and repression of gene targets. Thus, BirA-mediated tagging is an efficient approach for the direct capture and characterization of transcription factor complexes.
Journal of Cell Science | 2012
Mariëtte van de Corput; Ernie de Boer; Tobias A. Knoch; Wiggert A. van Cappellen; Adrian Quintanilla; Leanna Ferrand; Frank Grosveld
Summary The chromatin architecture is constantly changing because of cellular processes such as proliferation, differentiation and changes in the expression profile during gene activation or silencing. Unravelling the changes that occur in the chromatin structure during these processes has been a topic of interest for many years. It is known that gene activation of large gene loci is thought to occur by means of an active looping mechanism. It was also shown for the &bgr;-globin locus that the gene promoter interacts with an active chromatin hub by means of an active looping mechanism. This means that the locus changes in three-dimensional (3D) nuclear volume and chromatin shape. As a means of visualizing and measuring these dynamic changes in chromatin structure of the &bgr;-globin locus, we used a 3D DNA-FISH method in combination with 3D image acquisition to volume render fluorescent signals into 3D objects. These 3D chromatin structures were geometrically analysed, and results prior to and after gene activation were quantitatively compared. Confocal and super-resolution imaging revealed that the inactive locus occurs in several different conformations. These conformations change in shape and surface structure upon cell differentiation into a more folded and rounded structure that has a substantially smaller size and volume. These physical measurements represent the first non-biochemical evidence that, upon gene activation, an actively transcribing chromatin hub is formed by means of additional chromatin looping.