Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ernst Bonek is active.

Publication


Featured researches published by Ernst Bonek.


IEEE Antennas and Propagation Magazine | 2001

The double-directional radio channel

Martin Steinbauer; Andreas F. Molisch; Ernst Bonek

We introduce the concept of the double-directional mobile radio channel. It is called this because it includes angular information at both link ends, e.g., at the base station and at the mobile station. We show that this angular information can be obtained with synchronized antenna arrays at both link ends. In wideband high-resolution measurements, we use a switched linear array at the receiver and a virtual-cross array at the transmitter. We evaluate the raw measurement data with a technique that alternately used estimation and beamforming, and that relied on ESPRIT (estimation of signal parameters via rotational invariance techniques) to obtain superresolution in both angular domains and in the delay domain. In sample microcellular scenarios (open and closed courtyard, line-of-sight and obstructed line-of-sight), up to 50 individual propagation paths are determined. The major multipath components are matched precisely to the physical environment by geometrical considerations. Up to three reflection/scattering points per propagation path are identified and localized, lending insight into the multipath spreading properties in a microcell. The extracted multipath parameters allow unambiguous scatterer identification and channel characterization, independently of a specific antenna, its configuration (single/array), and its pattern. The measurement results demonstrate a considerable amount of power being carried via multiply reflected components, thus suggesting revisiting the popular single-bounce propagation models. It turns out that the wideband double-directional evaluation is a most complete method for separating multipath components. Due to its excellent spatial resolution, the double-directional concept provides accurate estimates of the channels multipath-richness, which is the important parameter for the capacity of multiple-input multiple-output (MIMO) channels.


IEEE Transactions on Wireless Communications | 2006

A stochastic MIMO channel model with joint correlation of both link ends

Werner Weichselberger; Markus Herdin; Hiiseyin Özcelik; Ernst Bonek

Abstract-This paper presents a novel stochastic channel model for multiple-input multiple-output (MIMO) wireless radio channels. In contrast to state-of-the-art stochastic MIMO channel models, the spatial correlation properties of the channel are not divided into separate contributions from transmitter and receiver. Instead, the joint correlation properties are modeled by describing the average coupling between the eigenmodes of the two link ends. The necessary and sufficient condition for the proposed model to hold is that the eigenbasis at the receiver is independent of the transmit weights, and vice versa. The authors discuss the mathematical elements of the model, which can be easily extracted from measurements, from a radio propagation point of view and explain the underlying assumption of the model in physical terms. The validation of the proposed model by means of measured data obtained from two completely different measurement campaigns reveals its ability to better predict capacity and spatial channel structure than other popular stochastic channel models.


Eurasip Journal on Wireless Communications and Networking | 2007

Survey of channel and radio propagation models for wireless MIMO systems

Peter Almers; Ernst Bonek; Alister G. Burr; Nicolai Czink; Mérouane Debbah; Vittorio Degli-Esposti; Helmut Hofstetter; Pekka Kyösti; David I. Laurenson; Gerald Matz; Andreas F. Molisch; Claude Oestges; H. Ozcelik

This paper provides an overview of the state-of-the-art radio propagation and channel models for wireless multiple-input multiple-output (MIMO) systems. We distinguish between physical models and analytical models and discuss popular examples from both model types. Physical models focus on the double-directional propagation mechanisms between the location of transmitter and receiver without taking the antenna configuration into account. Analytical models capture physical wave propagation and antenna configuration simultaneously by describing the impulse response (equivalently, the transfer function) between the antenna arrays at both link ends. We also review some MIMO models that are included in current standardization activities for the purpose of reproducible and comparable MIMO system evaluations. Finally, we describe a couple of key features of channels and radio propagation which are not sufficiently included in current MIMO models.


IEEE Journal on Selected Areas in Communications | 2002

Capacity of MIMO systems based on measured wireless channels

Andreas F. Molisch; Martin Steinbauer; Martin Toeltsch; Ernst Bonek; Reiner S. Thomä

We measure the capacity of multiple-input multiple-output radio systems in microcellular environments. We use a new data evaluation method that allows to evaluate the cumulative distribution function of the capacity from a single measurement. This method is based on an extraction of the parameters of the multipath components and, thereafter, a synthetic variation of their phases. In the analyzed environments, we find capacities to be about 30% smaller than would be anticipated from an idealized model. In addition, the frequency selectivity of the channel makes the CDF of the capacity steeper and, thus, increases the outage capacity, compared with the frequency-flat case, but the influence on the mean capacity is small.


IEEE Transactions on Antennas and Propagation | 1997

High-resolution 3-D direction-of-arrival determination for urban mobile radio

Josef Fuhl; Jean-Pierre Rossi; Ernst Bonek

The in-depth knowledge of the mobile radio channel is particularly important for radio communication modeling and advanced technology system design. We propose an accurate method to determine jointly the azimuth and elevation angle and the delay of waves incoming at the receiver. The method is applied to measurements of the complex impulse response of the mobile radio channel, performed on a planar array placed on a mobile in an urban cellular environment. The directions-of-arrival (DOA) were obtained by the means of a direction finding algorithm-two-dimensional (2-D) unitary ESPRIT. Two-dimensional spatial smoothing as an extension of ordinary spatial smoothing is utilized to decorrelate coherent waves. The application of 2-D unitary ESPRIT increases the angular resolution over conventional Fourier analysis or the scattering function by an order of magnitude and overcomes difficulties due to secondary lobes. The time delay is determined from wideband channel sounder measurements. The results confirm some assumptions on propagation mechanisms: (1) the wave-guiding property of streets (canyon effect), which is especially pronounced for long-delayed paths; (2) the variation of the number of incoming waves with their excess delay-the larger the excess delay, the lower the number of paths comprising an echo in the power delay profile; (3) if a single path remains, the privileged DOA is the direction of the street; (4) the exponential part of the power delay profile due to scatterers all around the receiver; and (5) the elevation dependence or the impinging power. In the tested receiver locations, paths with elevations between 0/spl deg/ and 40/spl deg/ dominate, containing about 90% of the received power.


IEEE Transactions on Antennas and Propagation | 2000

Directional macro-cell channel characterization from urban measurements

Alexander Kuchar; Jean-Pierre Rossi; Ernst Bonek

We measured the angular power distribution at the mobile station in downtown Paris at 890 MHz. The transmit antenna was omnidirectional and placed high above rooftops. The receiver antenna, a 21/spl times/41 element rectangular synthetic array, was located on the roof of a van. The refined high-resolution evaluation method, particularly robust against nonstationary signal components, allows an angular resolution of better than 1/spl deg/ in both azimuth and elevation and a delay resolution of 33 ns. Combined angular/temporal domain measurements are crucial for the understanding of the propagation mechanisms. The evaluated sites showed strongly street-dominated propagation. We found a combined circular and rectangular distribution of scatterers around the mobile station in street-dominated environments. Propagation over the roofs was significant; typically 65% of energy was incident with elevation larger than 100. Our results corroborate the hypothesis on the importance of multiple reflections/diffractions in urban macro cells. We explain this behavior by two reasons: narrow streets favoring a canyon effect and strong scatterers without line-of-sight (LOS) to the mobile station.


IEEE Journal on Selected Areas in Communications | 2002

Statistical characterization of urban spatial radio channels

Martin Toeltsch; Juha Laurila; Kimmo Kalliola; Andreas F. Molisch; Pertti Vainikainen; Ernst Bonek

We present a statistical analysis of wideband three-dimensional channel measurements at base station locations in an urban environment. Plots of the received energy over azimuth, elevation, and delay planes suggest that the incident waves group to clusters in most measured transmitter positions. A super-resolution algorithm (Unitary ESPRIT) allows one to resolve individual multipath components in such clusters and hence enables a detailed statistical analysis of the propagation properties. The origins of clusters-sometimes even individual multipath components-such as street apertures, large buildings, roof edges, or building corners can be localized on the city map. Street guided propagation dominates most of the scenarios (78%-97% of the total received power), while quasi-line-of-sight over-the-rooftop components are weak(3%-13% of the total received power). For this measurement campaign, in 90% of the cases, 75% of the total received power is concentrated in the two strongest clusters, but only 55% in the strongest one. Our analysis yields an exponential decay of power with 8.9 dB//spl mu/s, and a standard deviation of the log-normally distributed deviations from the exponential of 9.0 dB. The power of cross-polarized components is 8 dB below copolarized ones on average (vertical transmission).


IEEE Transactions on Wireless Communications | 2007

Cluster Characteristics in a MIMO Indoor Propagation Environment

Nicolai Czink; Xuefeng Yin; H. Ozcelik; Markus Herdin; Ernst Bonek; Bernard Henri Fleury

Essential parameters of physical, propagation-based MIMO channel models are the fading statistics and the directional spread of multipath clusters. In this paper we determine these parameters in the azimuth-of-arrival/azimuth-of-departure (AoA/AoD) domain based on comprehensive indoor MIMO measurements at 5.2 GHz in a cluttered office environment using the SAGE algorithm for parameter estimation. Due to cluster identification in AoA/AoD-domain we found a greater number of clusters than those reported in previous publications. Regarding the fading statistics of clusters, so far not studied, strong (obstructed-)line-of-sight clusters show Rician fading, corresponding to few dominant propagation paths, whereas most clusters exhibit Rayleigh fading, corresponding to many paths with approximately equal powers and uncorrelated phases. Root-mean-square cluster azimuth spreads (CASs) were estimated with a novel method by appropriately restricting the support of the cluster azimuth distribution. We found that the estimated CASs are different when seen from transmitter or receiver, i.e. their ranges are from 2deg to 9deg and from 2deg to 7deg at the transmitter side and the receiver side, respectively


IEEE Transactions on Antennas and Propagation | 2002

Wideband 3D characterization of mobile radio channels in urban environment

Juha Laurila; Kimmo Kalliola; Martin Toeltsch; Klaus Hugl; Pertti Vainikainen; Ernst Bonek

This paper describes three-dimensional (3D) radio channel measurements at the base station site in an urban environment. We introduce a measurement concept which combines an RF switched receiver array and a synthetic aperture technique and allows full 3D characterization of the channel. Additionally, dual-polarized patch antennas as array elements enable full determination of the polarization properties of the impinging signals. We describe measurements at over 70 different transmitter positions and three receiver array sites with different sectors and antenna heights. Our results show that the received energy is concentrated within identifiable clusters in the azimuth-elevation-delay domain. We demonstrate that the observed propagation mechanisms are mainly determined by the environment close to the base station. Street canyon propagation dominates also when the receiver array is at or even above rooftop level with the studied measurement distances. Thus, the azimuth spectrum at the BS site is fairly independent of the location of the mobile. Signal components propagating over the rooftop are often related to reflections from high-rise buildings in the surroundings.


vehicular technology conference | 2005

Correlation matrix distance, a meaningful measure for evaluation of non-stationary MIMO channels

Markus Herdin; Nicolai Czink; H. Ozcelik; Ernst Bonek

The correlation matrix distance (CMD), an earlier introduced measure for characterization of non-stationary MIMO channels, is analyzed regarding its capability to predict performance degradation in MIMO transmission schemes. For that purpose we consider the performance reduction that a prefiltering MIMO transmission scheme faces due to non-stationary changes of the MIMO channel. We show that changes in the spatial structure of the channel corresponding to high values in the CMD also show up as a significant reduction in performance of the considered MIMO transmission scheme. Such significant changes in the spatial structure of the mobile radio channel are shown to appear also for small movements within an indoor environment. Stationarity can therefore not always be assumed for indoor MIMO radio channels.

Collaboration


Dive into the Ernst Bonek's collaboration.

Top Co-Authors

Avatar

Andreas F. Molisch

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Juha Laurila

Vienna University of Technology

View shared research outputs
Top Co-Authors

Avatar

Nicolai Czink

Vienna University of Technology

View shared research outputs
Top Co-Authors

Avatar

Josef Fuhl

Vienna University of Technology

View shared research outputs
Top Co-Authors

Avatar

H. Ozcelik

Vienna University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge