Ernst Jarosch
Max Delbrück Center for Molecular Medicine
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ernst Jarosch.
Nature Cell Biology | 2005
Birgit Meusser; Christian Hirsch; Ernst Jarosch; Thomas Sommer
Endoplasmic reticulum (ER)-associated protein degradation (ERAD) eliminates misfolded or unassembled proteins from the ER. ERAD targets are selected by a quality control system within the ER lumen and are ultimately destroyed by the cytoplasmic ubiquitin–proteasome system (UPS). The spatial separation between substrate selection and degradation in ERAD requires substrate transport from the ER to the cytoplasm by a process termed dislocation. In this review, we will summarize advances in various aspects of ERAD and discuss new findings on how substrate dislocation is achieved.
Nature Cell Biology | 2002
Ernst Jarosch; Christof Taxis; Corinna Volkwein; Javier Bordallo; Daniel Finley; Dieter H. Wolf; Thomas Sommer
Endoplasmic reticulum (ER)-associated protein degradation by the ubiquitin–proteasome system requires the dislocation of substrates from the ER into the cytosol. It has been speculated that a functional ubiquitin proteasome pathway is not only essential for proteolysis, but also for the preceding export step. Here, we show that short ubiquitin chains synthesized on proteolytic substrates are not sufficient to complete dislocation; the size of the chain seems to be a critical determinant. Moreover, our results suggest that the AAA proteins of the 26S proteasome are not directly involved in substrate export. Instead, a related AAA complex Cdc48, is required for ER-associated protein degradation upstream of the proteasome.
Nature Cell Biology | 2000
Ruth Friedlander; Ernst Jarosch; Jörg Urban; Corinna Volkwein; Thomas Sommer
Ubiquitin conjugation during endoplasmic-reticulum-associated degradation (ERAD) depends on the activity of Ubc7. Here we show that Ubc1 acts as a further ubiquitin-conjugating enzyme in this pathway. Absence of both enzymes results in marked stabilization of an ERAD substrate and induction of the unfolded-protein response (UPR). Furthermore, basic ERAD activity is sufficient to eliminate unfolded proteins under normal conditions. However, when stress is applied, the UPR is required to increase ERAD activity. We thus demonstrate, for the first time, a regulatory loop between ERAD and the UPR, which is essential for normal growth of yeast cells.
Nature Cell Biology | 2005
Oliver Neuber; Ernst Jarosch; Corinna Volkwein; Jan Walter; Thomas Sommer
Endoplasmic reticulum (ER)-associated protein degradation requires the dislocation of selected substrates from the ER to the cytosol for proteolysis via the ubiquitin–proteasome system. The AAA ATPase Cdc48 (known as p97 or VCP in mammals) has a crucial, but poorly understood role in this transport step. Here, we show that Ubx2 (Sel1) mediates interaction of the Cdc48 complex with the ER membrane-bound ubiquitin ligases Hrd1 (Der3) and Doa10. The membrane protein Ubx2 contains a UBX domain that interacts with Cdc48 and an additional UBA domain. Absence of Ubx2 abrogates breakdown of ER proteins but also that of a cytosolic protein, which is ubiquitinated by Doa10. Intriguingly, our results suggest that recruitment of Cdc48 by Ubx2 is essential for turnover of both ER and non-ER substrates, whereas the UBA domain of Ubx2 is specifically required for ER proteins only. Thus, a complex comprising the AAA ATPase, a ubiquitin ligase and the recruitment factor Ubx2 has a central role in ER-associated proteolysis.
Nature Cell Biology | 2006
Robert Gauss; Ernst Jarosch; Thomas Sommer; Christian Hirsch
A quality-control system surveys the lumen of the endoplasmic reticulum for terminally misfolded proteins. Polypeptides singled out by this system are ultimately degraded by the cytosolic ubiquitin-proteasome pathway. Key components of both the endoplasmic reticulum quality-control system and the degradation machinery have been identified, but a connection between the two systems has remained elusive. Here, we report an association between the endoplasmic reticulum quality-control lectin Yos9p and Hrd3p, a component of the ubiquitin-proteasome system that links these pathways. We identify designated regions in the luminal domain of Hrd3p that interact with Yos9p and the ubiquitin ligase Hrd1p. Binding of misfolded proteins occurs through Hrd3p, suggesting that Hrd3p recognises proteins that deviate from their native conformation, whereas Yos9p ensures that only terminally misfolded polypeptides are degraded.
The EMBO Journal | 1998
Carla M. Koehler; Sabeeha S. Merchant; Wolfgang Oppliger; Karl Schmid; Ernst Jarosch; Luisita Dolfini; Tina Junne; Gottfried Schatz; Kostas Tokatlidis
Tim10p, a protein of the yeast mitochondrial intermembrane space, was shown previously to be essential for the import of multispanning carrier proteins from the cytoplasm into the inner membrane. We now identify Tim9p, another essential component of this import pathway. Most of Tim9p is associated with Tim10p in a soluble 70 kDa complex. Tim9p and Tim10p co‐purify in successive chromatographic fractionations and co‐immunoprecipitated with each other. Tim9p can be cross‐linked to a partly translocated carrier protein. A small fraction of Tim9p is bound to the outer face of the inner membrane in a 300 kDa complex whose other subunits include Tim54p, Tim22p, Tim12p and Tim10p. The sequence of Tim9p is 25% identical to that of Tim10p and Tim12p. A Ser67→Cys67 mutation in Tim9p suppresses the temperature‐sensitive growth defect of tim10‐1 and tim12‐1 mutants. Tim9p is a new subunit of the TIM machinery that guides hydrophobic inner membrane proteins across the aqueous intermembrane space.
The EMBO Journal | 2006
Robert Gauss; Thomas Sommer; Ernst Jarosch
Misfolded proteins of the endoplasmic reticulum (ER) are targeted to the cytoplasm for proteasomal degradation. Key components of this process are ER membrane‐bound ubiquitin ligases. These ligases associate with the cytoplasmic AAA‐ATPase Cdc48p/p97, which is thought to support the release of malfolded proteins from the ER. Here, we characterize a yeast protein complex containing the ubiquitin ligase Hrd1p and the ER membrane proteins Hrd3p and Der1p. Hrd3p binds malfolded proteins in the ER lumen enabling their delivery to downstream components. Therefore, we propose that Hrd3p acts as a substrate recruitment factor for the Hrd1p ligase complex. Hrd3p function is also required for the association of Cdc48p with Hrd1p. Moreover, our data demonstrate that recruitment of Cdc48p depends on substrate processing by the Hrd1p ligase complex. Thus, the Hrd1p ligase complex unites substrate selection in the ER lumen and polyubiquitination in the cytoplasm and links these processes to the release of ER proteins via the Cdc48p complex.
Biochimica et Biophysica Acta | 2011
Katrin Bagola; Martin Mehnert; Ernst Jarosch; Thomas Sommer
Protein folding within the endoplasmic reticulum (ER) of eukaryotic cells is erroneous and often results in the formation of terminally malfolded species. A quality control system retards such molecules in the ER and eventually initiates their dislocation into the cytosol for proteolysis by 26S proteasomes. This process is termed ER associated protein degradation (ERAD). The spatial separation of ER based quality control and cytosolic proteolysis poses the need for a machinery that promotes the extraction of substrates from the ER. Due to the heterogeneous nature of the client proteins this transport system displays several unique features. Selective recognition of ERAD substrates does not involve transferable transport signals in the primary sequence and thus must follow other principles than established for proteins designated for the import into organelles. Moreover, an ER dislocation system must be capable to ship polypeptides, which may be at least partly folded and are in most cases covalently modified with bulky and hydrophilic glycans, through a membrane without disrupting the integrity of the ER. In this review we present current ideas on the highly dynamic and flexible nature of the dislocation apparatus and speculate on the mechanism that removes aberrant polypeptides from the ER in the course of ERAD. This article is part of a Special Issue entitled Protein translocation across or insertion into membranes.
Molecular Cell | 2009
Sabine C. Horn; Jennifer Hanna; Christian Hirsch; Corinna Volkwein; Anja Schütz; Udo Heinemann; Thomas Sommer; Ernst Jarosch
Protein quality control in the endoplasmic reticulum is of central importance for cellular homeostasis in eukaryotes. Crucial for this process is the HRD-ubiquitin ligase (HMG-CoA reductase degradation), which singles out terminally misfolded proteins and routes them for degradation to cytoplasmic 26S-proteasomes. Certain functions of this enzyme complex are allocated to defined subunits. However, it remains unclear how these components act in a concerted manner. Here, we show that Usa1 functions as a major scaffold protein of the HRD-ligase. For the turnover of soluble substrates, Der1 binding to the C terminus of Usa1 is required. The N terminus of Usa1 associates with Hrd1 and thus bridges Der1 to Hrd1. Strikingly, the Usa1 N terminus also induces oligomerization of the HRD complex, which is an exclusive prerequisite for the degradation of membrane proteins. Our data demonstrate that scaffold proteins are required to adapt ubiquitin ligase activities toward different classes of substrates.
Cell | 2014
Martin S. Denzel; Nadia J. Storm; Aljona Gutschmidt; Ruth Baddi; Yvonne Hinze; Ernst Jarosch; Thomas Sommer; Thorsten Hoppe; Adam Antebi
Aging entails a progressive decline in protein homeostasis, which often leads to age-related diseases. The endoplasmic reticulum (ER) is the site of protein synthesis and maturation for secreted and membrane proteins. Correct folding of ER proteins requires covalent attachment of N-linked glycan oligosaccharides. Here, we report that increased synthesis of N-glycan precursors in the hexosamine pathway improves ER protein homeostasis and extends lifespan in C. elegans. Addition of the N-glycan precursor N-acetylglucosamine to the growth medium slows aging in wild-type animals and alleviates pathology of distinct neurotoxic disease models. Our data suggest that reduced aggregation of metastable proteins and lifespan extension depend on enhanced ER-associated protein degradation, proteasomal activity, and autophagy. Evidently, hexosamine pathway activation or N-acetylglucosamine supplementation induces distinct protein quality control mechanisms, which may allow therapeutic intervention against age-related and proteotoxic diseases.