Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ernst W. Spannhake is active.

Publication


Featured researches published by Ernst W. Spannhake.


Digestive Diseases and Sciences | 1998

Prostaglandin levels in human colorectal mucosa: Effects of sulindac in patients with familial adenomatous polyposis

Francis M. Giardiello; Ernst W. Spannhake; Raymond N. DuBois; Linda M. Hylind; C. Rahj Robinson; Walter C. Hubbard; Stanley R. Hamilton; Vincent W. Yang

Recent evidence suggests that nonsteroidalantiinflammatory drugs (NSAIDs) may prevent colorectalcancer. The mechanism of action of NSAIDs inchemoprevention is unknown but may be linked to theireffect on mucosal prostaglandin levels. Levels of fivemajor prostaglandin metabolites were measured by gaschromatography-mass spectrometry in biopsy specimens offlat rectal mucosa from four patients with familial adenomatous polyposis (FAP) before and aftersulindac therapy and from five healthy individuals. Theprostaglandin present at highest concentration in rectalmucosa from FAP and control subjects was prostaglandin E2. The concentration of thromboxaneB2 alone was significantly elevated in FAPpatients compared to controls (P = 0.016). In FAPpatients treated with sulindac, all prostaglandinmetabolite levels were significantly reduced compared to pretreatmentlevels (P < 0.05) except prostaglandin D2(P = 0.07). Prostaglandins D2, E2,F2α, and 6-keto-F1αlevels also were significantly reduced in FAP patients on sulindac compared to healthy controls (P< 0.05). However, interpatient heterogeneity ofresponse to sulindac was evident with changes rangingfrom +19% to –89%, and the patient with thegreatest reductions after sulindac developed colorectal cancerafter 35 months of therapy. Sulindac treatment, at drugdoses shown to regress colorectal adenomas in FAPpatients, has heterogeneous effects on the level ofmajor prostaglandins in their rectal mucosa and maynot prevent colorectal cancer due to uncoupling ofprostaglandin levels and carcinogenesis.


Journal of Biological Chemistry | 2006

Regulation of Lysophosphatidic Acid-induced Epidermal Growth Factor Receptor Transactivation and Interleukin-8 Secretion in Human Bronchial Epithelial Cells by Protein Kinase Cδ, Lyn Kinase, and Matrix Metalloproteinases

Yutong Zhao; Donghong He; Bahman Saatian; Tonya Watkins; Ernst W. Spannhake; Nigel J. Pyne; Viswanathan Natarajan

We have demonstrated earlier that lysophosphatidic acid (LPA)-induced interleukin-8 (IL-8) secretion is regulated by protein kinase Cδ (PKCδ)-dependent NF-κB activation in human bronchial epithelial cells (HBEpCs). Here we provide evidence for signaling pathways that regulate LPA-mediated transactivation of epidermal growth factor receptor (EGFR) and the role of cross-talk between G-protein-coupled receptors and receptor-tyrosine kinases in IL-8 secretion in HBEpCs. Treatment of HBEpCs with LPA stimulated tyrosine phosphorylation of EGFR, which was attenuated by matrix metalloproteinase (MMP) inhibitor (GM6001), heparin binding (HB)-EGF inhibitor (CRM 197), and HB-EGF neutralizing antibody. Overexpression of dominant negative PKCδ or pretreatment with a PKCδ inhibitor (rottlerin) or Src kinase family inhibitor (PP2) partially blocked LPA-induced MMP activation, proHB-EGF shedding, and EGFR tyrosine phosphorylation. Down-regulation of Lyn kinase, but not Src kinase, by specific small interfering RNA mitigated LPA-induced MMP activation, proHB-EGF shedding, and EGFR phosphorylation. In addition, overexpression of dominant negative PKCδ blocked LPA-induced phosphorylation and translocation of Lyn kinase to the plasma membrane. Furthermore, down-regulation of EGFR by EGFR small interfering RNA or pretreatment of cells with EGFR inhibitors AG1478 and PD158780 almost completely blocked LPA-dependent EGFR phosphorylation and partially attenuated IL-8 secretion, respectively. These results demonstrate that LPA-induced IL-8 secretion is partly dependent on EGFR transactivation regulated by PKCδ-dependent activation of Lyn kinase and MMPs and proHB-EGF shedding, suggesting a novel mechanism of cross-talk and interaction between G-protein-coupled receptors and receptor-tyrosine kinases in HBEpCs.


American Journal of Rhinology | 2008

Th2 cytokines associated with chronic rhinosinusitis with polyps down-regulate the antimicrobial immune function of human sinonasal epithelial cells

Murugappan Ramanathan; W. Lee; Ernst W. Spannhake; Andrew P. Lane

Background Chronic rhinosinusitis with nasal polyps (CRSwNPs) is a disorder characterized by persistent eosinophilic Th2 inflammation and frequent sinonasal microbial colonization. It has been postulated that an abnormal mucosal immune response underlies disease pathogenesis. The relationship between Th2 inflammatory cytokines and the innate immune function of sinonasal epithelial cells (SNECs) has not been explored. Methods Human SNECs (HSNECs) isolated from control subjects and patients with CRS were assessed for expression of antimicrobial innate immune genes and proinflammatory cytokine genes by real-time polymerase chain reaction, ELISA, and flow cytometry. A model of the Th2 inflammatory environment was created by exposure of primary HSNEC to the Th2 cytokine interleukin (IL)-4 or IL-13 for 36 hours, with subsequent assessment of innate immune gene expression. Results HSNEC obtained from CRSwNP patients displayed decreased expression of multiple antimicrobial innate immune markers, including toll-like receptor 9, human beta-defensin 2, and surfactant protein A. Baseline expression of these genes by normal and CRS HSNEC in culture is significantly down-regulated after incubation with IL-4 or IL-13. Conclusion Expression of multiple innate immune genes by HSNEC is reduced in CRSwNP. One mechanism appears to be a direct effect of the leukocyte-derived Th2 cytokines present in the sinonasal mucosa in CRSwNP. Impaired mucosal innate immunity may contribute to microbial colonization and abnormal immune responses associated with CRSwNP.


American Journal of Rhinology | 2007

Sinonasal epithelial cell expression of toll-like receptor 9 is decreased in chronic rhinosinusitis with polyps

Murray Ramanathan; Won Kyung Lee; Marc G. Dubin; Sandra Y. Lin; Ernst W. Spannhake; Andrew P. Lane

Background Innate immune recognition of pathogens by sinonasal epithelial cells may play an important role in the pathogenesis of chronic rhinosinusitis (CRS). Previous studies have indicated that toll-like receptor (TLR) mRNA is present in sinonasal mucosa, and levels of TLR9 expression are decreased in recalcitrant CRS with nasal polyps (CRSwNP). However, the cellular source and function of TLR9 in the sinonasal epithelium is not known. In this study, primary epithelial cell cultures were analyzed from control subjects and CRSwNP patients to determine the presence and function of TLR9 protein. Methods Primary epithelial cell cultures were established from 5 controls and 10 CRSwNP patients undergoing sinus surgery. Flow cytometry was used to confirm purity of epithelial cells and to assess expression of TLR9 protein. Epithelial cells were stimulated with TLR9 agonist, and mRNA was analyzed by real-time PCR for expression of human β-defensin (HBD) 2 and interleukin (IL)-8. Results Flow cytometry showed TLR9 protein in 100% of epithelial cells from controls and CRSwNP patients. The level of expression was 50% lower in CRS patients than in controls. Stimulation of epithelial cells with TLR9 agonist produced a 1.5- to 9-fold increase in HBD-2 and IL-8 mRNA expression. Conclusion Functional TLR9 protein is expressed by normal and diseased sinonasal epithelial cells. The level of TLR9 expression is decreased in CRSwNP patients, consistent with the previous finding of decreased TLR9 mRNA in whole sinonasal tissue. These findings suggest that impaired innate immune responses to pathogens via TLR9 on sinonasal epithelial cells may represent a critical mechanism in chronic inflammatory sinus disease.


Biochemical Journal | 2006

Transcriptional regulation of lysophosphatidic acid-induced interleukin-8 expression and secretion by p38 MAPK and JNK in human bronchial epithelial cells

Bahman Saatian; Yutong Zhao; Donghong He; Steve N. Georas; Tonya Watkins; Ernst W. Spannhake; Viswanathan Natarajan

HBEpCs (human bronchial epithelial cells) contribute to airway inflammation by secreting a variety of cytokines and chemokines in response to allergens, pathogens, viruses and environmental toxins and pollutants. The potent neutrophil chemoattractant, IL-8 (interleukin-8), is a major cytokine secreted by HBEpCs. We have recently demonstrated that LPA (lysophosphatidic acid) stimulated IL-8 production in HBEpCs via protein kinase C delta dependent signal transduction. However, mechanisms of IL-8 expression and secretion are complex and involve multiple protein kinases and transcriptional factors. The present study was undertaken to investigate MAPK (mitogen-activated protein kinase) signalling in the transcriptional regulation of IL-8 expression and secretion in HBEpCs. Exposure of HBEpCs to LPA (1 microM) enhanced expression and secretion of IL-8 by 5-8-fold and stimulated threonine/tyrosine phosphorylation of ERK (extracellular-signal-regulated kinase), p38 MAPK and JNK (c-Jun N-terminal kinase). The LPA-induced secretion of IL-8 was blocked by the p38 MAPK inhibitor SB203580, by p38 MAPK siRNA (small interfering RNA), and by the JNK inhibitor JNK(i) II, but not by the MEK (MAPK/ERK kinase) inhibitor, PD98059. LPA enhanced the transcriptional activity of the IL-8 gene; that effect relied on activation of the transcriptional factors NF-kappaB (nuclear factor kappaB) and AP-1 (activator protein-1). Furthermore, SB203580 attenuated LPA-dependent phosphorylation of IkappaB (inhibitory kappaB), NF-kappaB and phospho-p38 translocation to the nucleus, NF-kappaB transcription and IL-8 promoter-mediated luciferase reporter activity, without affecting the JNK pathway and AP-1 transcription. Similarly, JNK(i) II only blocked LPA-mediated phosphorylation of JNK and c-Jun, AP-1 transcription and IL-8 promoter-mediated luciferase reporter activity, without blocking p38 MAPK-dependent NF-kappaB transcription. Additionally, siRNA for LPA(1-3) receptors partially blocked LPA-induced IL-8 production and activation of MAPKs. The LPA1 and LPA3 receptors, as compared with LPA2, were most efficient in transducing LPA-mediated IL-8 production. These results show an independent role for p38 MAPK and JNK in LPA-induced IL-8 expression and secretion via NF-kappaB and AP-1 transcription respectively in HBEpCs.


Biochemical Journal | 2005

Lipid phosphate phosphatase-1 regulates lysophosphatidic acid-induced calcium release, NF-κB activation and interleukin-8 secretion in human bronchial epithelial cells

Yutong Zhao; Peter V. Usatyuk; Rhett Cummings; Bahman Saatian; Donghong He; Tonya Watkins; Andrew J. Morris; Ernst W. Spannhake; David N. Brindley; Viswanathan Natarajan

LPA (lysophosphatidic acid), a potent bioactive phospholipid, elicits diverse cellular responses through activation of the G-protein-coupled receptors LPA1-LPA4. LPA-mediated signalling is partially regulated by LPPs (lipid phosphate phosphatases; LPP-1, -2 and -3) that belong to the phosphatase superfamily. This study addresses the role of LPPs in regulating LPA-mediated cell signalling and IL-8 (interleukin-8) secretion in HBEpCs (human bronchial epithelial cells). Reverse transcription-PCR and Western blotting revealed the presence and expression of LPP-1-3 in HBEpCs. Exogenous [3H]oleoyl LPA was hydrolysed to [3H]-mono-oleoylglycerol. Infection of HBEpCs with an adenoviral construct of human LPP-1 for 48 h enhanced the dephosphorylation of exogenous LPA by 2-3-fold compared with vector controls. Furthermore, overexpression of LPP-1 partially attenuated LPA-induced increases in the intracellular Ca2+ concentration, phosphorylation of IkappaB (inhibitory kappaB) and translocation of NF-kappaB (nuclear factor-kappaB) to the nucleus, and almost completely prevented IL-8 secretion. Infection of cells with an adenoviral construct of the mouse LPP-1 (R217K) mutant partially attenuated LPA-induced IL-8 secretion without altering LPA-induced changes in intracellular Ca2+ concentration, phosphorylation of IkappaB, NF-kappaB activation or IL-8 gene expression. Our results identify LPP-1 as a key regulator of LPA signalling and IL-8 secretion in HBEpCs. Thus LPPs could represent potential targets in regulating leucocyte infiltration and airway inflammation.


American Journal of Respiratory Cell and Molecular Biology | 2009

Regulation of COX-2 expression and IL-6 release by particulate matter in airway epithelial cells.

Yutong Zhao; Peter V. Usatyuk; Irina Gorshkova; Donghong He; Ting Wang; Liliana Moreno-Vinasco; Alison S. Geyh; Patrick N. Breysse; Jonathan M. Samet; Ernst W. Spannhake; Joe G. N. Garcia; Viswanathan Natarajan

Particulate matter (PM) in ambient air is a risk factor for human respiratory and cardiovascular diseases. The delivery of PM to airway epithelial cells has been linked to release of proinflammatory cytokines; however, the mechanisms of PM-induced inflammatory responses are not well-characterized. This study demonstrates that PM induces cyclooxygenase (COX)-2 expression and IL-6 release through both a reactive oxygen species (ROS)-dependent NF-kappaB pathway and an ROS-independent C/EBPbeta pathway in human bronchial epithelial cells (HBEpCs) in culture. Treatment of HBEpCs with Baltimore PM induced ROS production, COX-2 expression, and IL-6 release. Pretreatment with N-acetylcysteine (NAC) or EUK-134, in a dose-dependent manner, attenuated PM-induced ROS production, COX-2 expression, and IL-6 release. The PM-induced ROS was significantly of mitochondrial origin, as evidenced by increased oxidation of the mitochondrially targeted hydroethidine to hydroxyethidium by reaction with superoxide. Exposure of HBEpCs to PM stimulated phosphorylation of NF-kappaB and C/EBPbeta, while the NF-kappaB inhibitor, Bay11-7082, or C/EBPbeta siRNA attenuated PM-induced COX-2 expression and IL-6 release. Furthermore, NAC or EUK-134 attenuated PM-induced activation of NF-kappaB; however, NAC or EUK-134 had no effect on phosphorylation of C/EBPbeta. In addition, inhibition of COX-2 partly attenuated PM-induced Prostaglandin E2 and IL-6 release.


Biochemical Journal | 2008

Lysophosphatidic acid-induced transactivation of epidermal growth factor receptor regulates cyclo-oxygenase-2 expression and prostaglandin E2 release via C/EBPβ in human bronchial epithelial cells

Donghong He; Viswanathan Natarajan; Randi Stern; Irina Gorshkova; Julian Solway; Ernst W. Spannhake; Yutong Zhao

We have demonstrated that LPA (lysophosphatidic acid)-induced IL (interleukin)-8 secretion was partly mediated via transactivation of EGFR [EGF (epidermal growth factor) receptor] in HBEpCs (human bronchial epithelial primary cells). The present study provides evidence that LPA-induced transactivation of EGFR regulates COX (cyclo-oxygenase)-2 expression and PGE(2) [PG (prostaglandin) E(2)] release through the transcriptional factor, C/EBPbeta (CCAAT/enhancer-binding protein beta), in HBEpCs. Treatment with LPA (1 microM) stimulated COX-2 mRNA and protein expression and PGE(2) release via G(alphai)-coupled LPARs (LPA receptors). Pretreatment with inhibitors of NF-kappaB (nuclear factor-kappaB), JNK (Jun N-terminal kinase), or down-regulation of c-Jun or C/EBPbeta with specific siRNA (small interference RNA) attenuated LPA-induced COX-2 expression. Downregulation of EGFR by siRNA or pretreatment with the EGFR tyrosine kinase inhibitor, AG1478, partly attenuated LPA-induced COX-2 expression and phosphorylation of C/EBPbeta; however, neither of these factors had an effect on the NF-kappaB and JNK pathways. Furthermore, LPA-induced EGFR transactivation, phosphorylation of C/EBPbeta and COX-2 expression were attenuated by overexpression of a catalytically inactive mutant of PLD2 [PLD (phospholipase D) 2], PLD2-K758R, or by addition of myristoylated PKCzeta [PKC (protein kinase C) zeta] peptide pseudosubstrate. Overexpression of the PLD2-K758R mutant also attenuated LPA-induced phosphorylation and activation of PKCzeta. These results demonstrate that LPA induces COX-2 expression and PGE(2) production through EGFR transactivation-independent activation of transcriptional factors NF-kappaB and c-Jun, and EGFR transactivation-dependent activation of C/EBPbeta in HBEpCs. Since COX-2 and PGE(2) have been shown to be anti-inflammatory in airway inflammation, the present data suggest a modulating and protective role of LPA in regulating innate immunity and remodelling of the airways.


Environmental Health Perspectives | 1995

The Effects of Ozone on Immune Function

George J. Jakab; Ernst W. Spannhake; Brendan J. Canning; Steven R. Kleeberger; Matthew I. Gilmour

A review of the literature reveals that ozone (O3) exposure can either suppress or enhance immune responsiveness. These disparate effects elicited by O3 exposure depend, in large part, on the experimental design used, the immune parameters examined as well as the animal species studied. Despite the apparent contradictions, a general pattern of response to O3 exposure can be recognized. Most studies indicate that continuous O3 exposure leads to an early (days 0-3) impairment of immune responsiveness followed, with continued exposures, by a form of adaptation to O3 that results in a re-establishment of the immune response. The effects of O3 exposure on the response to antigenic stimulation also depend on the time at which O3 exposure occurred. Whereas O3 exposure prior to immunization is without effect on the response to antigen, O3 exposure subsequent to immunization suppresses the response to antigen. Although most studies have focused on immune responses in the lung, numerous investigators have provided functional and anatomical evidence to support the hypothesis that O3 exposure can have profound effects on systemic immunity.


Journal of Biological Chemistry | 2009

Lysophosphatidic Acid Enhances Pulmonary Epithelial Barrier Integrity and Protects Endotoxin-Induced Epithelial Barrier Disruption and Lung Injury

Donghong He; Yanlin Su; Peter V. Usatyuk; Ernst W. Spannhake; Paul Kogut; Julian Solway; Viswanathan Natarajan; Yutong Zhao

Lysophosphatidic acid (LPA), a bioactive phospholipid, induces a wide range of cellular effects, including gene expression, cytoskeletal rearrangement, and cell survival. We have previously shown that LPA stimulates secretion of pro- and anti-inflammatory cytokines in bronchial epithelial cells. This study provides evidence that LPA enhances pulmonary epithelial barrier integrity through protein kinase C (PKC) δ- and ζ-mediated E-cadherin accumulation at cell-cell junctions. Treatment of human bronchial epithelial cells (HBEpCs) with LPA increased transepithelial electrical resistance (TER) by ∼2.0-fold and enhanced accumulation of E-cadherin to the cell-cell junctions through Gαi-coupled LPA receptors. Knockdown of E-cadherin with E-cadherin small interfering RNA or pretreatment with EGTA (0.1 mm) prior to LPA (1 μm) treatment attenuated LPA-induced increases in TER in HBEpCs. Furthermore, LPA induced tyrosine phosphorylation of focal adhesion kinase (FAK) and overexpression of the FAK inhibitor, and FAK-related non-kinase-attenuated LPA induced increases in TER and E-cadherin accumulation at cell-cell junctions. Overexpression of dominant negative protein kinase δ and ζ attenuated LPA-induced phosphorylation of FAK, accumulation of E-cadherin at cell-cell junctions, and an increase in TER. Additionally, lipopolysaccharide decreased TER and induced E-cadherin relocalization from cell-cell junctions to cytoplasm in a dose-dependent fashion, which was restored by LPA post-treatment in HBEpCs. Intratracheal post-treatment with LPA (5 μm) reduced LPS-induced neutrophil influx, protein leak, and E-cadherin shedding in bronchoalveolar lavage fluids in a murine model of acute lung injury. These data suggest a protective role of LPA in airway inflammation and remodeling.

Collaboration


Dive into the Ernst W. Spannhake's collaboration.

Top Co-Authors

Avatar

Viswanathan Natarajan

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Yutong Zhao

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Steven R. Kleeberger

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Xiao Ying Yu

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

J. Kolbe

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

H. A. Menkes

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Andrew P. Lane

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Bahman Saatian

Johns Hopkins University

View shared research outputs
Researchain Logo
Decentralizing Knowledge