Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Errol Strain is active.

Publication


Featured researches published by Errol Strain.


The New England Journal of Medicine | 2011

Identification of a Salmonellosis Outbreak by Means of Molecular Sequencing

Lienau Ek; Errol Strain; Charles Wang; Jie Zheng; Andrea R. Ottesen; Christine E. Keys; Thomas S. Hammack; Steven M. Musser; Eric W. Brown; Marc W. Allard; Guojie Cao; Jianghong Meng; Robert Stones

The complexity of the modern food supply makes identifying foodborne outbreaks difficult. In this report, FDA investigators identify a 44-state outbreak of Salmonella enterica serotype Montevideo, using molecular sequencing.


BMC Genomics | 2012

High resolution clustering of Salmonella enterica serovar Montevideo strains using a next-generation sequencing approach

Marc W. Allard; Yan Luo; Errol Strain; Cong Li; Christine E. Keys; Insook Son; Robert Stones; Steven M. Musser; Eric W. Brown

BackgroundNext-Generation Sequencing (NGS) is increasingly being used as a molecular epidemiologic tool for discerning ancestry and traceback of the most complicated, difficult to resolve bacterial pathogens. Making a linkage between possible food sources and clinical isolates requires distinguishing the suspected pathogen from an environmental background and placing the variation observed into the wider context of variation occurring within a serovar and among other closely related foodborne pathogens. Equally important is the need to validate these high resolution molecular tools for use in molecular epidemiologic traceback. Such efforts include the examination of strain cluster stability as well as the cumulative genetic effects of sub-culturing on these clusters. Numerous isolates of S. Montevideo were shot-gun sequenced including diverse lineage representatives as well as numerous replicate clones to determine how much variability is due to bias, sequencing error, and or the culturing of isolates. All new draft genomes were compared to 34 S. Montevideo isolates previously published during an NGS-based molecular epidemiological case study.ResultsIntraserovar lineages of S. Montevideo differ by thousands of SNPs, that are only slightly less than the number of SNPs observed between S. Montevideo and other distinct serovars. Much less variability was discovered within an individual S. Montevideo clade implicated in a recent foodborne outbreak as well as among individual NGS replicates. These findings were similar to previous reports documenting homopolymeric and deletion error rates with the Roche 454 GS Titanium technology. In no case, however, did variability associated with sequencing methods or sample preparations create inconsistencies with our current phylogenetic results or the subsequent molecular epidemiological evidence gleaned from these data.ConclusionsImplementation of a validated pipeline for NGS data acquisition and analysis provides highly reproducible results that are stable and predictable for molecular epidemiological applications. When draft genomes are collected at 15×-20× coverage and passed through a quality filter as part of a data analysis pipeline, including sub-passaged replicates defined by a few SNPs, they can be accurately placed in a phylogenetic context. This reproducibility applies to all levels within and between serovars of Salmonella suggesting that investigators using these methods can have confidence in their conclusions.


Clinical Infectious Diseases | 2016

Implementation of Nationwide Real-time Whole-genome Sequencing to Enhance Listeriosis Outbreak Detection and Investigation

Brendan R. Jackson; Cheryl L. Tarr; Errol Strain; Kelly A. Jackson; Amanda Conrad; Heather Carleton; Lee S. Katz; Steven Stroika; L. Hannah Gould; Rajal K. Mody; Benjamin J. Silk; Jennifer Beal; Yi Chen; Ruth Timme; Matthew Doyle; Angela Fields; Matthew E. Wise; Glenn Tillman; Stephanie Defibaugh-Chavez; Zuzana Kucerova; Ashley Sabol; Katie Roache; Eija Trees; Mustafa Simmons; Jamie Wasilenko; Kristy Kubota; Hannes Pouseele; William Klimke; John M. Besser; Eric W. Brown

Listeria monocytogenes (Lm) causes severe foodborne illness (listeriosis). Previous molecular subtyping methods, such as pulsed-field gel electrophoresis (PFGE), were critical in detecting outbreaks that led to food safety improvements and declining incidence, but PFGE provides limited genetic resolution. A multiagency collaboration began performing real-time, whole-genome sequencing (WGS) on all US Lm isolates from patients, food, and the environment in September 2013, posting sequencing data into a public repository. Compared with the year before the project began, WGS, combined with epidemiologic and product trace-back data, detected more listeriosis clusters and solved more outbreaks (2 outbreaks in pre-WGS year, 5 in WGS year 1, and 9 in year 2). Whole-genome multilocus sequence typing and single nucleotide polymorphism analyses provided equivalent phylogenetic relationships relevant to investigations; results were most useful when interpreted in context of epidemiological data. WGS has transformed listeriosis outbreak surveillance and is being implemented for other foodborne pathogens.


Emerging Infectious Diseases | 2014

Rapid Whole-Genome Sequencing for Surveillance of Salmonella enterica Serovar Enteritidis

Henk C. den Bakker; Marc W. Allard; Dianna J. Bopp; Eric W. Brown; John Fontana; Zamin Iqbal; Aristea Kinney; Ronald J. Limberger; Kimberlee A. Musser; Matthew Shudt; Errol Strain; Martin Wiedmann; William J. Wolfgang

For Salmonella enterica serovar Enteritidis, 85% of isolates can be classified into 5 pulsed-field gel electrophoresis (PFGE) types. However, PFGE has limited discriminatory power for outbreak detection. Although whole-genome sequencing has been found to improve discrimination of outbreak clusters, whether this procedure can be used in real-time in a public health laboratory is not known. Therefore, we conducted a retrospective and prospective analysis. The retrospective study investigated isolates from 1 confirmed outbreak. Additional cases could be attributed to the outbreak strain on the basis of whole-genome data. The prospective study included 58 isolates obtained in 2012, including isolates from 1 epidemiologically defined outbreak. Whole-genome sequencing identified additional isolates that could be attributed to the outbreak, but which differed from the outbreak-associated PFGE type. Additional putative outbreak clusters were detected in the retrospective and prospective analyses. This study demonstrates the practicality of implementing this approach for outbreak surveillance in a state public health laboratory.


BMC Microbiology | 2013

Baseline survey of the anatomical microbial ecology of an important food plant: Solanum lycopersicum (tomato).

Andrea R. Ottesen; Antonio González Peña; James R. White; James B. Pettengill; Cong Li; Sarah Allard; Steven L. Rideout; Marc-Antoine Allard; Thomas Hill; Peter Evans; Errol Strain; Steven M. Musser; Rob Knight; Eric R. Brown

BackgroundResearch to understand and control microbiological risks associated with the consumption of fresh fruits and vegetables has examined many environments in the farm to fork continuum. An important data gap however, that remains poorly studied is the baseline description of microflora that may be associated with plant anatomy either endemically or in response to environmental pressures. Specific anatomical niches of plants may contribute to persistence of human pathogens in agricultural environments in ways we have yet to describe. Tomatoes have been implicated in outbreaks of Salmonella at least 17 times during the years spanning 1990 to 2010. Our research seeks to provide a baseline description of the tomato microbiome and possibly identify whether or not there is something distinctive about tomatoes or their growing ecology that contributes to persistence of Salmonella in this important food crop.ResultsDNA was recovered from washes of epiphytic surfaces of tomato anatomical organs; leaves, stems, roots, flowers and fruits of Solanum lycopersicum (BHN602), grown at a site in close proximity to commercial farms previously implicated in tomato-Salmonella outbreaks. DNA was amplified for targeted 16S and 18S rRNA genes and sheared for shotgun metagenomic sequencing. Amplicons and metagenomes were used to describe “native” bacterial microflora for diverse anatomical parts of Virginia-grown tomatoes.ConclusionsDistinct groupings of microbial communities were associated with different tomato plant organs and a gradient of compositional similarity could be correlated to the distance of a given plant part from the soil. Unique bacterial phylotypes (at 95% identity) were associated with fruits and flowers of tomato plants. These include Microvirga, Pseudomonas, Sphingomonas, Brachybacterium, Rhizobiales, Paracocccus, Chryseomonas and Microbacterium. The most frequently observed bacterial taxa across aerial plant regions were Pseudomonas and Xanthomonas. Dominant fungal taxa that could be identified to genus with 18S amplicons included Hypocrea, Aureobasidium and Cryptococcus. No definitive presence of Salmonella could be confirmed in any of the plant samples, although 16S sequences suggested that closely related genera were present on leaves, fruits and roots.


Journal of Clinical Microbiology | 2016

Practical Value of Food Pathogen Traceability through Building a Whole-Genome Sequencing Network and Database.

Marc W. Allard; Errol Strain; David Melka; Kelly Bunning; Steven M. Musser; Eric W. Brown; Ruth Timme

ABSTRACT The FDA has created a United States-based open-source whole-genome sequencing network of state, federal, international, and commercial partners. The GenomeTrakr network represents a first-of-its-kind distributed genomic food shield for characterizing and tracing foodborne outbreak pathogens back to their sources. The GenomeTrakr network is leading investigations of outbreaks of foodborne illnesses and compliance actions with more accurate and rapid recalls of contaminated foods as well as more effective monitoring of preventive controls for food manufacturing environments. An expanded network would serve to provide an international rapid surveillance system for pathogen traceback, which is critical to support an effective public health response to bacterial outbreaks.


PLOS ONE | 2013

On the Evolutionary History, Population Genetics and Diversity among Isolates of Salmonella Enteritidis PFGE Pattern JEGX01.0004

Marc W. Allard; Yan Luo; Errol Strain; James B. Pettengill; Ruth Timme; Charles Y. Wang; Cong Li; Christine E. Keys; Jie Zheng; Robert Stones; Mark R. Wilson; Steven M. Musser; Eric W. Brown

Facile laboratory tools are needed to augment identification in contamination events to trace the contamination back to the source (traceback) of Salmonella enterica subsp. enterica serovar Enteritidis (S. Enteritidis). Understanding the evolution and diversity within and among outbreak strains is the first step towards this goal. To this end, we collected 106 new S. Enteriditis isolates within S. Enteriditis Pulsed-Field Gel Electrophoresis (PFGE) pattern JEGX01.0004 and close relatives, and determined their genome sequences. Sources for these isolates spanned food, clinical and environmental farm sources collected during the 2010 S. Enteritidis shell egg outbreak in the United States along with closely related serovars, S. Dublin, S. Gallinarum biovar Pullorum and S. Gallinarum. Despite the highly homogeneous structure of this population, S. Enteritidis isolates examined in this study revealed thousands of SNP differences and numerous variable genes (n = 366). Twenty-one of these genes from the lineages leading to outbreak-associated samples had nonsynonymous (causing amino acid changes) changes and five genes are putatively involved in known Salmonella virulence pathways. While chromosome synteny and genome organization appeared to be stable among these isolates, genome size differences were observed due to variation in the presence or absence of several phages and plasmids, including phage RE-2010, phage P125109, plasmid pSEEE3072_19 (similar to pSENV), plasmid pOU1114 and two newly observed mobile plasmid elements pSEEE1729_15 and pSEEE0956_35. These differences produced modifications to the assembled bases for these draft genomes in the size range of approximately 4.6 to 4.8 mbp, with S. Dublin being larger (∼4.9 mbp) and S. Gallinarum smaller (4.55 mbp) when compared to S. Enteritidis. Finally, we identified variable S. Enteritidis genes associated with virulence pathways that may be useful markers for the development of rapid surveillance and typing methods, potentially aiding in traceback efforts during future outbreaks involving S. Enteritidis PFGE pattern JEGX01.0004.


Genome Biology and Evolution | 2013

Phylogenetic Diversity of the Enteric Pathogen Salmonella enterica subsp. enterica Inferred from Genome-Wide Reference-Free SNP Characters

Ruth Timme; James B. Pettengill; Marc W. Allard; Errol Strain; Rodolphe Barrangou; Chris Wehnes; JoAnn S. Van Kessel; Jeffrey S. Karns; Steven M. Musser; Eric W. Brown

The enteric pathogen Salmonella enterica is one of the leading causes of foodborne illness in the world. The species is extremely diverse, containing more than 2,500 named serovars that are designated for their unique antigen characters and pathogenicity profiles—some are known to be virulent pathogens, while others are not. Questions regarding the evolution of pathogenicity, significance of antigen characters, diversity of clustered regularly interspaced short palindromic repeat (CRISPR) loci, among others, will remain elusive until a strong evolutionary framework is established. We present the first large-scale S. enterica subsp. enterica phylogeny inferred from a new reference-free k-mer approach of gathering single nucleotide polymorphisms (SNPs) from whole genomes. The phylogeny of 156 isolates representing 78 serovars (102 were newly sequenced) reveals two major lineages, each with many strongly supported sublineages. One of these lineages is the S. Typhi group; well nested within the phylogeny. Lineage-through-time analyses suggest there have been two instances of accelerated rates of diversification within the subspecies. We also found that antigen characters and CRISPR loci reveal different evolutionary patterns than that of the phylogeny, suggesting that a horizontal gene transfer or possibly a shared environmental acquisition might have influenced the present character distribution. Our study also shows the ability to extract reference-free SNPs from a large set of genomes and then to use these SNPs for phylogenetic reconstruction. This automated, annotation-free approach is an important step forward for bacterial disease tracking and in efficiently elucidating the evolutionary history of highly clonal organisms.


PeerJ | 2015

CFSAN SNP Pipeline: an automated method for constructing SNP matrices from next-generation sequence data

Steve Davis; James B. Pettengill; Yan Luo; Justin Payne; Al Shpuntoff; Hugh Rand; Errol Strain

The analysis of next-generation sequence (NGS) data is often a fragmented step-wise process. For example, multiple pieces of software are typically needed to map NGS reads, extract variant sites, and construct a DNA sequence matrix containing only single nucleotide polymorphisms (i.e., a SNP matrix) for a set of individuals. The management and chaining of these software pieces and their outputs can often be a cumbersome and diffi cult task. Here, we present CFSAN SNP Pipeline, which combines into a single package the mapping of NGS reads to a reference genome with Bowtie2, processing of those mapping (BAM) files using SAMtools, identification of variant sites using VarScan, and production of a SNP matrix using custom Python scripts. We also introduce a Python package (CFSAN SNP Mutator) that when given a reference genome will generate variants of known position against which we validate our pipeline. We created 1,000 simulated Salmonella enterica sp. enterica Serovar Agona genomes at 100× and 20× coverage, each containing 500 SNPs, 20 single-base insertions and 20 single-base deletions. For the 100× dataset, the CFSAN SNP Pipeline recovered 98.9% of the introduced SNPs and had a false positive rate of 1.04 × 10 −6 ; for the 20× dataset 98.8% of SNPs were recovered and the false positive rate was 8.34 × 10 −7 . Based on these results, CFSAN SNP Pipeline is a robust and accurate tool that it is among the first to combine into a single executable the myriad steps required to produce a SNP matrix from NGS data. Such a tool is useful to those working in an applied setting (e.g., food safety traceback investigations) as well as for those interested in evolutionary questions.


The Journal of Infectious Diseases | 2016

Tracing Origins of the Salmonella Bareilly Strain Causing a Food-borne Outbreak in the United States.

Maria Hoffmann; Yan Luo; Steven R. Monday; Narjol Gonzalez-Escalona; Andrea R. Ottesen; Tim Muruvanda; Charles Wang; George Kastanis; Christine E. Keys; Daniel Janies; Izzet F. Senturk; Hua Wang; Thomas S. Hammack; William J. Wolfgang; Dianna Schoonmaker-Bopp; Alvina Chu; Robert A. Myers; Julie Haendiges; Peter S. Evans; Jianghong Meng; Errol Strain; Marc W. Allard; Eric W. Brown

BACKGROUND Using a novel combination of whole-genome sequencing (WGS) analysis and geographic metadata, we traced the origins of Salmonella Bareilly isolates collected in 2012 during a widespread food-borne outbreak in the United States associated with scraped tuna imported from India. METHODS Using next-generation sequencing, we sequenced the complete genome of 100 Salmonella Bareilly isolates obtained from patients who consumed contaminated product, from natural sources, and from unrelated historically and geographically disparate foods. Pathogen genomes were linked to geography by projecting the phylogeny on a virtual globe and produced a transmission network. RESULTS Phylogenetic analysis of WGS data revealed a common origin for outbreak strains, indicating that patients in Maryland and New York were infected from sources originating at a facility in India. CONCLUSIONS These data represent the first report fully integrating WGS analysis with geographic mapping and a novel use of transmission networks. Results showed that WGS vastly improves our ability to delimit the scope and source of bacterial food-borne contamination events. Furthermore, these findings reinforce the extraordinary utility that WGS brings to global outbreak investigation as a greatly enhanced approach to protecting the human food supply chain as well as public health in general.

Collaboration


Dive into the Errol Strain's collaboration.

Top Co-Authors

Avatar

Eric W. Brown

Center for Food Safety and Applied Nutrition

View shared research outputs
Top Co-Authors

Avatar

Marc W. Allard

Food and Drug Administration

View shared research outputs
Top Co-Authors

Avatar

Ruth Timme

Center for Food Safety and Applied Nutrition

View shared research outputs
Top Co-Authors

Avatar

Yan Luo

Center for Food Safety and Applied Nutrition

View shared research outputs
Top Co-Authors

Avatar

James B. Pettengill

Center for Food Safety and Applied Nutrition

View shared research outputs
Top Co-Authors

Avatar

Thomas S. Hammack

Center for Food Safety and Applied Nutrition

View shared research outputs
Top Co-Authors

Avatar

Yi Chen

Food and Drug Administration

View shared research outputs
Top Co-Authors

Avatar

Steven M. Musser

Center for Food Safety and Applied Nutrition

View shared research outputs
Top Co-Authors

Avatar

David Melka

Food and Drug Administration

View shared research outputs
Top Co-Authors

Avatar

Charles Wang

Center for Food Safety and Applied Nutrition

View shared research outputs
Researchain Logo
Decentralizing Knowledge