Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Errol Zeiger is active.

Publication


Featured researches published by Errol Zeiger.


Mutation Research | 2000

The Ames Salmonella/microsome mutagenicity assay

Kristien Mortelmans; Errol Zeiger

The Ames Salmonella/microsome mutagenicity assay (Salmonella test; Ames test) is a short-term bacterial reverse mutation assay specifically designed to detect a wide range of chemical substances that can produce genetic damage that leads to gene mutations. The test employs several histidine dependent Salmonella strains each carrying different mutations in various genes in the histidine operon. These mutations act as hot spots for mutagens that cause DNA damage via different mechanisms. When the Salmonella tester strains are grown on a minimal media agar plate containing a trace of histidine, only those bacteria that revert to histidine independence (his(+)) are able to form colonies. The number of spontaneously induced revertant colonies per plate is relatively constant. However, when a mutagen is added to the plate, the number of revertant colonies per plate is increased, usually in a dose-related manner. The Ames test is used world-wide as an initial screen to determine the mutagenic potential of new chemicals and drugs. The test is also used for submission of data to regulatory agencies for registration or acceptance of many chemicals, including drugs and biocides. International guidelines have been developed for use by corporations and testing laboratories to ensure uniformity of testing procedures. This review provides historical aspects of how the Ames was developed and detailed procedures for performing the test, including the design and interpretation of results.


Mutation Research-genetic Toxicology and Environmental Mutagenesis | 2003

HUMN project: Detailed description of the scoring criteria for the cytokinesis-block micronucleus assay using isolated human lymphocyte cultures

Michael Fenech; Wushou P. Chang; Micheline Kirsch-Volders; Nina Holland; Stefano Bonassi; Errol Zeiger

Criteria for scoring micronuclei and nucleoplasmic bridges in binucleated cells in the cytokinesis-block micronucleus assay for isolated human lymphocyte cultures are described in detail. Morphological characteristics of mononucleated cells, binucleated cells, and multinucleated cells as well as necrotic and apoptotic cells and nuclear buds are also described. These criteria are illustrated by a series of schematic diagrams as well as a comprehensive set of colour photographs that are of practical assistance during the scoring of slides. These scoring criteria, diagrams and photographs have been used in a HUman MicronNucleus (HUMN) project inter-laboratory slide-scoring exercise to evaluate the extent of variability that can be attributable to individual scorers and individual laboratories when measuring the frequency of micronuclei and nucleoplasmic bridges in binucleated cells as well as the nuclear division index. The results of the latter study are described in an accompanying paper. It is expected that these scoring criteria will assist in the development of a procedure for calibrating scorers and laboratories so that results from different laboratories for the cytokinesis-block micronucleus assay may be more comparable in the future.


Environmental and Molecular Mutagenesis | 2001

HUman MicroNucleus project: international database comparison for results with the cytokinesis-block micronucleus assay in human lymphocytes: I. Effect of laboratory protocol, scoring criteria, and host factors on the frequency of micronuclei

Stefano Bonassi; Michael Fenech; Cecilia Lando; Yi‐ping Lin; Marcello Ceppi; Wushou P. Chang; Nina Holland; Micheline Kirsch-Volders; Errol Zeiger; Sadayuki Ban; Roberto Barale; Maria Paola Bigatti; Claudia Bolognesi; Cao Jia; Marina Di Giorgio; Lynnette R. Ferguson; Aleksandra Fucic; Omar Garcia Lima; Patrizia Hrelia; Ayyathan P. Krishnaja; Tung-Kwang Lee; Lucia Migliore; Ludmilla Mikhalevich; Ekaterina Mirkova; Pasquale Mosesso; W.-U. Müller; Youichi Odagiri; Maria Rosaria Scarffi; Elena Szabova; Irena Vorobtsova

Micronucleus (MN) expression in peripheral blood lymphocytes is well established as a standard method for monitoring chromosome damage in human populations. The first results of an analysis of pooled data from laboratories using the cytokinesis‐block micronucleus (CBMN) assay and participating in the HUMN (HUman MicroNucleus project) international collaborative study are presented. The effects of laboratory protocol, scoring criteria, and host factors on baseline micronucleated binucleate cell (MNC) frequency are evaluated, and a reference range of “normal” values against which future studies may be compared is provided. Primary data from historical records were submitted by 25 laboratories distributed in 16 countries. This resulted in a database of nearly 7000 subjects. Potentially significant differences were present in the methods used by participating laboratories, such as in the type of culture medium, the concentration of cytochalasin‐B, the percentage of fetal calf serum, and in the culture method. Differences in criteria for scoring micronuclei were also evident. The overall median MNC frequency in nonexposed (i.e., normal) subjects was 6.5‰ and the interquartile range was between 3 and 12‰. An increase in MNC frequency with age was evident in all but two laboratories. The effect of gender, although not so evident in all databases, was also present, with females having a 19% higher level of MNC frequency (95% confidence interval: 14–24%). Statistical analyses were performed using random‐effects models for correlated data. Our best model, which included exposure to genotoxic factors, host factors, methods, and scoring criteria, explained 75% of the total variance, with the largest contribution attributable to laboratory methods. Environ. Mol. Mutagen. 37:31–45, 2001


Mutation Research-reviews in Mutation Research | 2008

The micronucleus assay in human buccal cells as a tool for biomonitoring DNA damage: The HUMN project perspective on current status and knowledge gaps

Nina Holland; Claudia Bolognesi; Micheline Kirsch-Volders; Stefano Bonassi; Errol Zeiger; Siegfried Knasmueller; Michael Fenech

The micronucleus (MN) assay in exfoliated buccal cells is a useful and minimally invasive method for monitoring genetic damage in humans. This overview has concluded that although MN assay in buccal cells has been used since the 1980s to demonstrate cytogenetic effects of environmental and occupational exposures, lifestyle factors, dietary deficiencies, and different diseases, important knowledge gaps remain about the characteristics of micronuclei and other nuclear abnormalities, the basic biology explaining the appearance of various cell types in buccal mucosa samples and effects of diverse staining procedures and scoring criteria in laboratories around the world. To address these uncertainties, the human micronucleus project (HUMN; see http://www.humn.org) has initiated a new international validation project for the buccal cell MN assay similar to that previously performed using human lymphocytes. Future research should explore sources of variability in the assay (e.g. between laboratories and scorers, as well as inter- and intra-individual differences in subjects), and resolve key technical issues, such as the method of buccal cell staining, optimal criteria for classification of normal and degenerated cells and for scoring micronuclei and other abnormalities. The harmonization and standardization of the buccal MN assay will allow more reliable comparison of the data among human populations and laboratories, evaluation of the assays performance, and consolidation of its world-wide use for biomonitoring of DNA damage.


Mutation Research-reviews in Mutation Research | 2003

Effect of smoking habit on the frequency of micronuclei in human lymphocytes: Results from the Human MicroNucleus project

Stefano Bonassi; Monica Neri; Cecilia Lando; Marcello Ceppi; Yi‐ping Lin; Wushou P. Chang; Nina Holland; Micheline Kirsch-Volders; Errol Zeiger; Michael Fenech

The effect of tobacco smoking on the frequency of micronuclei (MN) in human lymphocytes has been the object of many population studies. In most reports, the results were unexpectedly negative, and in many instances smokers had lower frequencies of MN than non-smokers. A pooled re-analysis of 24 databases from the HUMN international collaborative project has been performed with the aim of understanding the impact of smoking habits on MN frequency. The complete database included 5710 subjects, with 3501 non-smokers, 1409 current smokers, and 800 former smokers, among subjects in occupational and environmental surveys. The overall result of the re-analysis confirmed the small decrease of MN frequencies in current smokers (frequency ratio (FR) = 0.97, 95% confidence interval (CI) = 0.93-1.01) and in former smokers (FR = 0.96, 95% CI = 0.91-1.01), when compared to non-smokers. MN frequency was not influenced by the number of cigarettes smoked per day among subjects occupationally exposed to genotoxic agents, whereas a typical U-shaped curve is observed for non-exposed smokers, showing a significant increase of MN frequency in individuals smoking 30 cigarettes or more per day (FR = 1.59, 95% CI = 1.35-1.88). This analysis confirmed that smokers do not experience an overall increase in MN frequency, although when the interaction with occupational exposure is taken into account, heavy smokers were the only group showing a significant increase in genotoxic damage as measured by the micronucleus assay in lymphocytes. From these results some general recommendations for the design of biomonitoring studies involving smokers can be formulated. Quantitative data about smoking habit should always be collected because, in the absence of such data, the simple comparison of smokers versus non-smokers could be misleading. The sub-group of heavy smokers (> or =30 cigarettes per day) should be specifically evaluated whenever it is large enough to satisfy statistical requirements. The presence of an interaction between smoking habit and occupational exposure to genotoxic agents should be always tested.


Nature Protocols | 2009

Buccal micronucleus cytome assay

Philip Thomas; Nina Holland; Claudia Bolognesi; Micheline Kirsch-Volders; Stefano Bonassi; Errol Zeiger; Siegfried Knasmueller; Michael Fenech

The Buccal Micronucleus Cytome (BMCyt) assay is a minimally invasive method for studying DNA damage, chromosomal instability, cell death and the regenerative potential of human buccal mucosal tissue. This method is increasingly used in molecular epidemiological studies for investigating the impact of nutrition, lifestyle factors, genotoxin exposure and genotype on DNA damage, chromosome malsegregation and cell death. The biomarkers measured in this assay have been associated with increased risk of accelerated ageing, cancer and neurodegenerative diseases. This protocol describes one of the current established methods for buccal cell collection using a small-headed toothbrush, the generation of a single-cell suspension, slide preparation using cytocentrifugation, fixation and staining using Feulgen and Light Green for both bright field and fluorescence microscopic analysis. The scoring criteria for micronuclei and other nuclear anomalies are also described in detail. The protocol in its current form takes approximately 4 h to complete from the time of buccal cell collection to the generation of stained slides for microscopic analysis.


Archive | 1996

Handbook of carcinogenic potency and genotoxicity databases

Lois Swirsky Gold; Errol Zeiger

Carcinogenic Potency Database, L. Swirsky Gold, T.H. Slone, N.B. Manley, G. Backman Garfinkel, L. Rohrbach, and B.N. Ames Methods for the Carcinogenic Potency Database Guide to the Plot of the Carcinogenic Potency Database Plot of Cancer Test Results Appendices of Codes and Definitions Carcinogenicity Bibliography Carcinogenicity Bibliography - NCI/NTP Technical Reports Carcinogenicity Bibliography - General Literature Summary of Carcinogenic Potency Database by Target Organ, L. Swirsky Gold, N.B. Manley, and T.H. Slone Summary of Carcinogenic Potency Database by Chemical, L. Swirsky Gold, T.H. Slone, and B.N. Ames Summary of Chemical Carcinogenicity in Rats and Mice Summary of Chemical Carcinogenicity in Hamsters Summary of Chemical Carcinogenicity in Nonhuman Primates and Dogs Overview and Update of Analyses of the Carcinogenic Potency Database, L. Swirsky Gold, T.H. Slone, and B.N. Ames Genotoxicity Database, E. Zeiger Description of Genotoxicity Tests Table of Genotoxicity Results Genotoxicity Bibliography Index of Chemical Names in the Carcinogenic Potency (CPDB) and Genotoxicity (GT) Databases by Chemical Abstract Service (CAS) Registry Number


Mutation Research-genetic Toxicology and Environmental Mutagenesis | 2003

Intra- and inter-laboratory variation in the scoring of micronuclei and nucleoplasmic bridges in binucleated human lymphocytes. Results of an international slide-scoring exercise by the HUMN project.

Michael Fenech; Stefano Bonassi; Julie Turner; Cecilia Lando; Marcello Ceppi; Wushou P. Chang; Nina Holland; Micheline Kirsch-Volders; Errol Zeiger; Maria Paola Bigatti; Claudia Bolognesi; Jia Cao; Giuseppe De Luca; Marina Di Giorgio; Lynnette R. Ferguson; Aleksandra Fucic; Omar Garcia Lima; Valeria Hadjidekova; Patrizia Hrelia; Alicja Jaworska; Gordana Joksic; A. P. Krishnaja; Tung Kwang Lee; Antonietta Martelli; Michael J. McKay; Lucia Migliore; Ekaterina Mirkova; W.-U. Müller; Youichi Odagiri; T. Orsière

One of the objectives of the HUman MicroNucleus (HUMN) project is to identify the methodological variables that have an important impact on micronucleus (MN) or micronucleated (MNed) cell frequencies measured in human lymphocytes using the cytokinesis-block micronucleus assay. In a previous study we had shown that the scoring criteria used were likely to be an important variable. To determine the extent of residual variation when laboratories scored cells from the same cultures using the same set of standard scoring criteria, an inter-laboratory slide-scoring exercise was performed among 34 laboratories from 21 countries with a total of 51 slide scorers involved. The results of this study show that even under these optimized conditions there is a great variation in the MN frequency or MNed cell frequency obtained by individual laboratories and scorers. All laboratories ranked correctly the MNed cell frequency in cells from cultures that were unirradiated, or exposed to 1 or 2Gy of gamma rays. The study also estimated that the intra-scorer median coefficient of variation for duplicate MNed cell frequency scores is 29% for unexposed cultures and 14 and 11% for cells exposed to 1 and 2Gy, respectively. These values can be used as a standard for quality or acceptability of data in future studies. Using a Poisson regression model it was estimated that radiation dose explained 67% of the variance, while staining method, cell sample, laboratory, and covariance explained 0.6, 0.3, 6.5, and 25.6% of the variance, respectively, leaving only 3.1% of the variance unexplained. As part of this exercise, nucleoplasmic bridges were also estimated by the laboratories; however, inexperience in the use of this biomarker of chromosome rearrangement was reflected in the much greater heterogeneity in the data and the unexplained variation estimated by the Poisson model. The results of these studies indicate clearly that even after standardizing culture and scoring conditions it will be necessary to calibrate scorers and laboratories if MN, MNed cell and nucleoplasmic bridge frequencies are to be reliably compared among laboratories and among populations.


Mutation Research-reviews in Mutation Research | 2011

The HUman MicroNucleus project on eXfoLiated buccal cells (HUMNXL): The role of life-style, host factors, occupational exposures, health status, and assay protocol

Stefano Bonassi; Erdem Coskun; Marcello Ceppi; Cecilia Lando; Claudia Bolognesi; Sema Burgaz; Nina Holland; Micheline Kirsh-Volders; Siegfried Knasmueller; Errol Zeiger; Deyanira Carnesoltas; Delia Cavallo; Juliana da Silva; Vanessa Moraes de Andrade; Gonca Cakmak Demircigil; Aníbal Domínguez Odio; Hamiyet Donmez-Altuntas; Gilka Jorge Figaro Gattás; Ashok K. Giri; Sarbani Giri; Belinda C. Gómez-Meda; Sandra Gómez-Arroyo; Valeria Hadjidekova; Anja Haverić; Mala Kamboj; Kemajl Kurteshi; Maria Grazia Martino-Roth; Regina Montero Montoya; Armen Nersesyan; Susana Pastor-Benito

The human buccal micronucleus cytome assay (BMCyt) is one of the most widely used techniques to measure genetic damage in human population studies. Reducing protocol variability, assessing the role of confounders, and estimating a range of reference values are research priorities that will be addressed by the HUMN(XL) collaborative study. The HUMN(XL) project evaluates the impact of host factors, occupation, life-style, disease status, and protocol features on the occurrence of MN in exfoliated buccal cells. In addition, the study will provide a range of reference values for all cytome endpoints. A database of 5424 subjects with buccal MN values obtained from 30 laboratories worldwide was compiled and analyzed to investigate the influence of several conditions affecting MN frequency. Random effects models were mostly used to investigate MN predictors. The estimated spontaneous MN frequency was 0.74‰ (95% CI 0.52-1.05). Only staining among technical features influenced MN frequency, with an abnormal increase for non-DNA-specific stains. No effect of gender was evident, while the trend for age was highly significant (p<0.001). Most occupational exposures and a diagnosis of cancer significantly increased MN and other endpoints frequencies. MN frequency increased in heavy smoking (≥40cig/day, FR=1.37; 95% CI 1.03-.82) and decreased with daily fruit consumption (FR=0.68; 95% CI 0.50-0.91). The results of the HUMN(XL) project identified priorities for validation studies, increased the basic knowledge of the assay, and contributed to the creation of a laboratory network which in perspective may allow the evaluation of disease risk associated with MN frequency.


Mutagenesis | 2011

The HUMN and HUMNxL international collaboration projects on human micronucleus assays in lymphocytes and buccal cells—past, present and future

Michael Fenech; Nina Holland; Errol Zeiger; Wushou P. Chang; Sema Burgaz; Philip Thomas; Claudia Bolognesi; Siegfried Knasmueller; Micheline Kirsch-Volders; Stefano Bonassi

The International Human Micronucleus (HUMN) Project (www.humn.org) was founded in 1997 to coordinate worldwide research efforts aimed at using micronucleus (MN) assays to study DNA damage in human populations. The central aims were to (i) collect databases on baseline MN frequencies and associated methodological, demographic, genetic and exposure variables, (ii) determine those variables that affect MN frequency, (iii) establish standardised protocols for performing assays so that data comparisons can be made more reliably across laboratories and countries and (iv) evaluate the association of MN frequency with disease outcomes both cross-sectionally and prospectively. In the first 10 years of the HUMN project, all of these objectives were achieved successfully for the MN assay using the cytokinesis-block micronucleus (CBMN) assay in human peripheral blood lymphocytes and the findings were published in a series of papers that are among the most highly cited in the field. The CBMN protocol and scoring criteria are now standardised; the effect of age, gender and smoking status have been defined, and it was shown prospectively using a database of almost 7000 subjects that an increased MN frequency in lymphocytes predicts cancer risk. More recently in 2007, the HUMN coordinating group decided to launch an equivalent project focussed on the human MN assay in buccal epithelial cells because it provides a complementary method for measuring MN in a tissue that is easily accessible and does not require tissue culture. This new international project is now known as the human MN assay in exfoliated cells (HUMN(xL)). At present, a database for >5000 subjects worldwide has been established for the HUMN(xL) project. The inter-laboratory slide-scoring exercise for the HUMN(xL) project is at an advanced stage of planning and the analyses of data for methodological, demographic, genetic, lifestyle and exposure variables are at a final stage of completion. Future activities will be aimed at (i) defining the genetic variables that affect MN frequencies, (ii) validation of the various automated scoring systems based on image analysis, flow cytometry and laser scanning cytometry, (iii) standardisation of protocols for scoring micronuclei (MNi) in cells from other tissues, e.g. erythrocyte and nasal cells and (iv) prospective association studies with pregnancy complications, developmental defects, childhood cancers, cardiovascular disease and neurodegenerative diseases.

Collaboration


Dive into the Errol Zeiger's collaboration.

Top Co-Authors

Avatar

Dennis A. Pagano

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Barry H. Margolin

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nina Holland

University of California

View shared research outputs
Top Co-Authors

Avatar

Stefano Bonassi

National Cancer Research Institute

View shared research outputs
Top Co-Authors

Avatar

Michael Fenech

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Claudia Bolognesi

National Cancer Research Institute

View shared research outputs
Top Co-Authors

Avatar

Wushou P. Chang

National Yang-Ming University

View shared research outputs
Researchain Logo
Decentralizing Knowledge