Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ersan Kalay is active.

Publication


Featured researches published by Ersan Kalay.


Nature Genetics | 2011

CEP152 is a genome maintenance protein disrupted in Seckel syndrome

Ersan Kalay; Gökhan Yigit; Yakup Aslan; Karen E. Brown; Esther Pohl; Louise S. Bicknell; Hülya Kayserili; Yun Li; Beyhan Tüysüz; Gudrun Nürnberg; Wieland Kiess; Manfred Koegl; Ingelore Baessmann; Kurtulus Buruk; Bayram Toraman; Saadettin Kayipmaz; Sibel Kul; Mevlit Ikbal; Daniel J. Turner; Martin S. Taylor; Jan Aerts; Carol Scott; Karen Milstein; Hélène Dollfus; Dagmar Wieczorek; Han G. Brunner; Andrew P. Jackson; Anita Rauch; Peter Nürnberg; Ahmet Karagüzel

Functional impairment of DNA damage response pathways leads to increased genomic instability. Here we describe the centrosomal protein CEP152 as a new regulator of genomic integrity and cellular response to DNA damage. Using homozygosity mapping and exome sequencing, we identified CEP152 mutations in Seckel syndrome and showed that impaired CEP152 function leads to accumulation of genomic defects resulting from replicative stress through enhanced activation of ATM signaling and increased H2AX phosphorylation.


American Journal of Human Genetics | 2008

Mutations of ESRRB Encoding Estrogen-Related Receptor Beta Cause Autosomal-Recessive Nonsyndromic Hearing Impairment DFNB35

Rob W.J. Collin; Ersan Kalay; Muhammad Tariq; Theo A. Peters; Bert van der Zwaag; Hanka Venselaar; Jaap Oostrik; Kwanghyuk Lee; Zubair M. Ahmed; Refik Caylan; Yun Li; Henk A. Spierenburg; Erol Eyupoglu; Angelien Heister; Saima Riazuddin; Elif Bahat; Muhammad Ansar; Selçuk Arslan; Bernd Wollnik; Han G. Brunner; C.W.R.J. Cremers; Ahmet Karagüzel; Wasim Ahmad; Frans P.M. Cremers; Gert Vriend; Thomas B. Friedman; Sheikh Riazuddin; Suzanne M. Leal; Hannie Kremer

In a large consanguineous family of Turkish origin, genome-wide homozygosity mapping revealed a locus for recessive nonsyndromic hearing impairment on chromosome 14q24.3-q34.12. Fine mapping with microsatellite markers defined the critical linkage interval to a 18.7 cM region flanked by markers D14S53 and D14S1015. This region partially overlapped with the DFNB35 locus. Mutation analysis of ESRRB, a candidate gene in the overlapping region, revealed a homozygous 7 bp duplication in exon 8 in all affected individuals. This duplication results in a frame shift and premature stop codon. Sequence analysis of the ESRRB gene in the affected individuals of the original DFNB35 family and in three other DFNB35-linked consanguineous families from Pakistan revealed four missense mutations. ESRRB encodes the estrogen-related receptor beta protein, and one of the substitutions (p.A110V) is located in the DNA-binding domain of ESRRB, whereas the other three are substitutions (p.L320P, p.V342L, and p.L347P) located within the ligand-binding domain. Molecular modeling of this nuclear receptor showed that the missense mutations are likely to affect the structure and stability of these domains. RNA in situ hybridization in mice revealed that Esrrb is expressed during inner-ear development, whereas immunohistochemical analysis showed that ESRRB is present postnatally in the cochlea. Our data indicate that ESRRB is essential for inner-ear development and function. To our knowledge, this is the first report of pathogenic mutations of an estrogen-related receptor gene.


American Journal of Human Genetics | 2012

Mutations in RIPK4 Cause the Autosomal-Recessive Form of Popliteal Pterygium Syndrome

Ersan Kalay; Orhan Sezgin; Vasant Chellappa; Mehmet Mutlu; Heba Morsy; Hülya Kayserili; Elmar Kreiger; Aysegul Cansu; Bayram Toraman; Ebtesam M. Abdalla; Yakup Aslan; Shiv Pillai; Nurten Akarsu

The autosomal-recessive form of popliteal pterygium syndrome, also known as Bartsocas-Papas syndrome, is a rare, but frequently lethal disorder characterized by marked popliteal pterygium associated with multiple congenital malformations. Using Affymetrix 250K SNP array genotyping and homozygosity mapping, we mapped this malformation syndrome to chromosomal region 21q22.3. Direct sequencing of RIPK4 (receptor-interacting serine/threonine kinase protein 4) showed a homozygous transversion (c.362T>A) that causes substitution of a conserved isoleucine with asparagine at amino acid position 121 (p.Ile121Asn) in the serine/threonine kinase domain of the protein. Additional pathogenic mutations-a homozygous transition (c.551C>T) that leads to a missense substitution (p.Thr184Ile) at a conserved position and a homozygous one base-pair insertion mutation (c.777_778insA) predicted to lead to a premature stop codon (p.Arg260ThrfsX14) within the kinase domain-were observed in two families. Molecular modeling of the kinase domain showed that both the Ile121 and Thr184 positions are critical for the proteins stability and kinase activity. Luciferase reporter assays also demonstrated that these mutations are critical for the catalytic activity of RIPK4. RIPK4 mediates activation of the nuclear factor-κB (NF-κB) signaling pathway and is required for keratinocyte differentiation and craniofacial and limb development. The phenotype of Ripk4(-/-) mice is consistent with the human phenotype presented herein. Additionally, the spectrum of malformations observed in the presented families is similar, but less severe than the conserved helix-loop-helix ubiquitous kinase (CHUK)-deficient human fetus phenotype; known as Cocoon syndrome; this similarity indicates that RIPK4 and CHUK might function via closely related pathways to promote keratinocyte differentiation and epithelial growth.


Nature Genetics | 2008

Mutations of LRTOMT, a fusion gene with alternative reading frames, cause nonsyndromic deafness in humans

Zubair M. Ahmed; Saber Masmoudi; Ersan Kalay; Inna A. Belyantseva; Mohamed Ali Mosrati; Rob W.J. Collin; Saima Riazuddin; Mounira Hmani-Aifa; Hanka Venselaar; Mayya N Kawar; Abdelaziz Tlili; Bert van der Zwaag; Shahid Y. Khan; Leila Ayadi; S. Amer Riazuddin; Robert J. Morell; Andrew J. Griffith; Ilhem Charfedine; Refik Caylan; Jaap Oostrik; Ahmet Karagüzel; Abdelmonem Ghorbel; Sheikh Riazuddin; Thomas B. Friedman; Hammadi Ayadi; H. Kremer

Many proteins necessary for sound transduction have been identified through positional cloning of genes that cause deafness. We report here that mutations of LRTOMT are associated with profound nonsyndromic hearing loss at the DFNB63 locus on human chromosome 11q13.3–q13.4. LRTOMT has two alternative reading frames and encodes two different proteins, LRTOMT1 and LRTOMT2, detected by protein blot analyses. LRTOMT2 is a putative methyltransferase. During evolution, new transcripts can arise through partial or complete coalescence of genes. We provide evidence that in the primate lineage LRTOMT evolved from the fusion of two neighboring ancestral genes, which exist as separate genes (Lrrc51 and Tomt) in rodents.


Hearing Research | 2005

GJB2 mutations in Turkish patients with ARNSHL: prevalence and two novel mutations.

Ersan Kalay; Refik Caylan; H. Kremer; Arjan P.M. de Brouwer; Ahmet Karagüzel

Mutations in the connexin 26 gene (GJB2) cause a significant proportion of prelingual non-syndromic autosomal recessive deafness in all populations studied so far. To determine the percentage of hearing loss attributed to GJB2 in northeast Turkey, 93 unrelated patients with autosomal recessive non-syndromic hearing loss (ARNSHL) were screened. Seven different mutations were found in 29 of the patients with severe to profound hearing loss. The 35delG mutation was the most common mutation, accounting for 76% of all mutant GJB2 alleles. Four already described mutations, W24X, 310del14, delE120 and R184P and two novel mutations, Q80K and P173S, were identified. The allelic Delta(GJB6-D13S1830), which can cause hearing loss in combination with GJB2 mutations, was not present in our patients. Our results are comparable to those reported in other regions in Turkey and indicate that GJB2 mutations account for about 30% of Turkish patients with ARNSHL. Besides 35delG, W24X and delE120 occur more than once in the Turkish ARNSHL population with a frequency of about 5%.


Human Genetics | 2005

A novel TMPRSS3 missense mutation in a DFNB8/10 family prevents proteolytic activation of the protein

Marie Wattenhofer; Nilufer Sahin-Calapoglu; Ditte Andreasen; Ersan Kalay; Refik Caylan; Bastien Braillard; Nicole Fowler-Jaeger; Alexandre Reymond; Bernard C. Rossier; Ahmet Karagüzel

Pathogenic mutations in TMPRSS3, which encodes a transmembrane serine protease, cause non-syndromic deafness DFNB8/10. Missense mutations map in the low density-lipoprotein receptor A (LDLRA), scavenger-receptor cysteine-rich (SRCR), and protease domains of the protein, indicating that all domains are important for its function. TMPRSS3 undergoes proteolytic cleavage and activates the ENaC sodium channel in a Xenopus oocyte model system. To assess the importance of this gene in non-syndromic childhood or congenital deafness in Turkey, we screened for mutations affected members of 25 unrelated Turkish families. The three families with the highest LOD score for linkage to chromosome 21q22.3 were shown to harbor P404L, R216L, or Q398X mutations, suggesting that mutations in TMPRSS3 are a considerable contributor to non-syndromic deafness in the Turkish population. The mutant TMPRSS3 harboring the novel R216L missense mutation within the predicted cleavage site of the protein fails to undergo proteolytic cleavage and is unable to activate ENaC, thus providing evidence that pre-cleavage of TMPRSS3 is mandatory for normal function.


Journal of Molecular Medicine | 2005

A novel D458V mutation in the SANS PDZ binding motif causes atypical Usher syndrome

Ersan Kalay; A.P.M. de Brouwer; Refik Caylan; Sander B. Nabuurs; B. Wollnik; Ahmet Karagüzel; J. G. A. M. Heister; H. Erdol; Frans P.M. Cremers; C.W.R.J. Cremers; Han G. Brunner; H. Kremer

Homozygosity mapping and linkage analysis in a Turkish family with autosomal recessive prelingual sensorineural hearing loss revealed a 15-cM critical region at 17q25.1–25.3 flanked by the polymorphic markers D17S1807 and D17S1806. The maximum two-point lod score was 4.07 at θ=0.0 for the marker D17S801. The linkage interval contains the Usher syndrome 1G gene (USH1G) that is mutated in patients with Usher syndrome (USH) type 1g and encodes the SANS protein. Mutation analysis of USH1G led to the identification of a homozygous missense mutation D458V at the −3 position of the PDZ binding motif of SANS. This mutation was also present homozygously in one out of 64 additional families from Turkey with autosomal recessive nonsyndromic hearing loss and heterozygously in one out of 498 control chromosomes. By molecular modeling, we provide evidence that this mutation impairs the interaction of SANS with harmonin. Ophthalmologic examination and vestibular evaluation of patients from both families revealed mild retinitis pigmentosa and normal vestibular function. These results suggest that these patients suffer from atypical USH.


American Journal of Medical Genetics Part A | 2007

MYO15A (DFNB3) mutations in Turkish hearing loss families and functional modeling of a novel motor domain mutation.

Ersan Kalay; Abdullah Uzumcu; Elmar Krieger; Refik Caylan; Oya Uyguner; Melike Ulubil-Emiroglu; Hidayet Erdöl; Hülya Kayserili; Gunter Hafiz; Nermin Baserer; Angelien Heister; Hans Christian Hennies; Peter Nürnberg; Seher Basaran; Han G. Brunner; C.W.R.J. Cremers; Ahmet Karagüzel; Bernd Wollnik; H. Kremer

Myosin XVA is an unconventional myosin which has been implicated in autosomal recessive nonsyndromic hearing impairment (ARNSHI) in humans. In Myo15A mouse models, vestibular dysfunction accompanies the autosomal recessive hearing loss. Genomewide homozygosity mapping and subsequent fine mapping in two Turkish families with ARNSHI revealed significant linkage to a critical interval harboring a known deafness gene MYO15A on chromosome 17p13.1‐17q11.2. Subsequent sequencing of the MYO15A gene led to the identification of a novel missense mutation, c.5492G → T (p.Gly1831Val) and a novel splice site mutation, c.8968 − 1G → C. These mutations were not detected in additional 64 unrelated ARNSHI index patients and in 230 Turkish control chromosomes. Gly1831 is a conserved residue located in the motor domains of the different classes of myosins of different species. Molecular modeling of the motor head domain of the human myosin XVa protein suggests that the Gly1831Val mutation inhibits the powerstroke by reducing backbone flexibility and weakening the hydrophobic interactions necessary for signal transmission to the converter domain.


Journal of Enzyme Inhibition and Medicinal Chemistry | 2004

Effects of leptin and insulin on CA III expression in rat adipose tissue.

Ahmet Alver; Fahri Uçar; E. Edip Keha; Ersan Kalay; Ercument Ovali

Studies on the biochemical and molecular mechanisms underlying obesity have shown that the expression of some proteins was decreased with obesity in rat adipose tissue. One of these proteins is carbonic anhydrase III (CA III) which constitutes 24% of the cytosolic protein content and its function is unclear. A freshly isolated rat adipose cell culture model was used to examine the effect of leptin and insulin on CA III expression. It was found that leptin decreased CA III expression while insulin increased it which suggests that the decrease in CA III expression observed in obesity in rat adipose tissue may be related to hyperleptinemia.


BMC Medical Genetics | 2014

Role of estrogen related receptor beta (ESRRB) in DFN35B hearing impairment and dental decay.

Megan Weber; Hong-Yuan Hsin; Ersan Kalay; Dana Šafka Brožková; Takehiko Shimizu; Merve Bayram; Kathleen Deeley; Erika Calvano Küchler; Jessalyn Forella; Timothy D. Ruff; Vanessa M. Trombetta; Regina C. Sencak; Michael Hummel; Jessica Briseño-Ruiz; Shankar Revu; José Mauro Granjeiro; Leonardo Santos Antunes; Lívia Azeredo Alves Antunes; Fernanda Volpe de Abreu; Marcelo de Castro Costa; Patricia Nivoloni Tannure; Mine Koruyucu; Asli Patir; Fernando A. Poletta; Juan C. Mereb; Eduardo E. Castilla; Iêda M. Orioli; Mary L. Marazita; Hongjiao Ouyang; Thottala Jayaraman

BackgroundCongenital forms of hearing impairment can be caused by mutations in the estrogen related receptor beta (ESRRB) gene. Our initial linkage studies suggested the ESRRB locus is linked to high caries experience in humans.MethodsWe tested for association between the ESRRB locus and dental caries in 1,731 subjects, if ESRRB was expressed in whole saliva, if ESRRB was associated with the microhardness of the dental enamel, and if ESRRB was expressed during enamel development of mice.ResultsTwo families with recessive ESRRB mutations and DFNB35 hearing impairment showed more extensive dental destruction by caries. Expression levels of ESRRB in whole saliva samples showed differences depending on sex and dental caries experience.ConclusionsThe common etiology of dental caries and hearing impairment provides a venue to assist in the identification of individuals at risk to either condition and provides options for the development of new caries prevention strategies, if the associated ESRRB genetic variants are correlated with efficacy.

Collaboration


Dive into the Ersan Kalay's collaboration.

Top Co-Authors

Avatar

Ahmet Karagüzel

Karadeniz Technical University

View shared research outputs
Top Co-Authors

Avatar

Refik Caylan

Karadeniz Technical University

View shared research outputs
Top Co-Authors

Avatar

H. Kremer

Radboud University Nijmegen Medical Centre

View shared research outputs
Top Co-Authors

Avatar

Han G. Brunner

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Bayram Toraman

Karadeniz Technical University

View shared research outputs
Top Co-Authors

Avatar

C.W.R.J. Cremers

Radboud University Nijmegen Medical Centre

View shared research outputs
Top Co-Authors

Avatar

Frans P.M. Cremers

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Jaap Oostrik

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Rob W.J. Collin

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge