Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ersilia Marra is active.

Publication


Featured researches published by Ersilia Marra.


Plant Physiology | 2004

Production of reactive oxygen species, alteration of cytosolic ascorbate peroxidase, and impairment of mitochondrial metabolism are early events in heat shock-induced programmed cell death in tobacco Bright-Yellow 2 cells

Rosa Anna Vacca; Maria Concetta de Pinto; Daniela Valenti; Salvatore Passarella; Ersilia Marra; Laura De Gara

To gain some insight into the mechanisms by which plant cells die as a result of abiotic stress, we exposed tobacco (Nicotiana tabacum) Bright-Yellow 2 cells to heat shock and investigated cell survival as a function of time after heat shock induction. Heat treatment at 55°C triggered processes leading to programmed cell death (PCD) that was complete after 72 h. In the early phase, cells undergoing PCD showed an immediate burst in hydrogen peroxide (H2O2) and superoxide (O2·-) anion production. Consistently, death was prevented by the antioxidants ascorbate (ASC) and superoxide dismutase (SOD). Actinomycin D and cycloheximide, inhibitors of transcription and translation, respectively, also prevented cell death, but with a lower efficiency. Induction of PCD resulted in gradual oxidation of endogenous ASC; this was accompanied by a decrease in both the amount and the specific activity of the cytosolic ASC peroxidase (cAPX). A reduction in cAPX gene expression was also found in the late PCD phase. Moreover, changes of cAPX kinetic properties were found in PCD cells. Production of ROS in PCD cells was accompanied by early inhibition of glucose (Glc) oxidation, with a strong impairment of mitochondrial function as shown by an increase in cellular NAD(P)H fluorescence, and by failure of mitochondria isolated from cells undergoing PCD to generate membrane potential and to oxidize succinate in a manner controlled by ADP. Thus, we propose that in the early phase of tobacco Bright-Yellow 2 cell PCD, ROS production occurs, perhaps because of damage of the cell antioxidant system, with impairment of the mitochondrial oxidative phosphorylation.


FEBS Letters | 2001

Glutamate neurotoxicity, oxidative stress and mitochondria

Anna Atlante; Pietro Calissano; Antonella Bobba; Sergio Giannattasio; Ersilia Marra; Salvatore Passarella

The excitatory neurotransmitter glutamate plays a major role in determining certain neurological disorders. This situation, referred to as ‘glutamate neurotoxicity’ (GNT), is characterized by an increasing damage of cell components, including mitochondria, leading to cell death. In the death process, reactive oxygen species (ROS) are generated. The present study describes the state of art in the field of GNT with a special emphasis on the oxidative stress and mitochondria. In particular, we report how ROS are generated and how they affect mitochondrial function in GNT. The relationship between ROS generation and cytochrome c release is described in detail, with the released cytochrome c playing a role in the cell defense mechanism against neurotoxicity.


Journal of Biological Chemistry | 2000

Cytochrome c Is Released from Mitochondria in a Reactive Oxygen Species (ROS)-dependent Fashion and Can Operate as a ROS Scavenger and as a Respiratory Substrate in Cerebellar Neurons Undergoing Excitotoxic Death

Anna Atlante; Pietro Calissano; Antonella Bobba; Amalia Azzariti; Ersilia Marra; Salvatore Passarella

In rat cerebellar granule cells both reactive oxygen species production and release of cytochrome c take place during glutamate toxicity. This investigation was aimed (i) to ascertain whether and how these two processes are related and (ii) to gain insight into the role played by the released cytochrome c in the onset of neurotoxicity. Cytochrome c release takes place owing to the generation of reactive oxygen species both in glutamate-treated cerebellar granule cells and in sister control cultures incubated in the presence of the reactive oxygen species-generating system consisting of xanthine plus xanthine oxidase. In the early phase of neurotoxicity (30-min glutamate exposure) about 40% of the maximum (as measured at 3 h of glutamate exposure) cytochrome c release was found to occur in cerebellar granule cells from mitochondria that were essentially coupled and intact and that had a negligible production of oxygen free radicals. Contrarily, mitochondria from cells treated with glutamate for 3 h were mostly uncoupled and produced reactive oxygen species at a high rate. The cytosolic fraction containing the released cytochrome c was able to transfer electrons from superoxide anion to molecular oxygen via the respiratory chain and was found to partially prevent glutamate toxicity when added externally to cerebellar neurons undergoing necrosis. In the light of these findings, we propose that in the early phase of neurotoxicity, cytochromec release can be part of a cellular and mitochondrial defense mechanism against oxidative stress.


Plant Physiology | 2006

Cytochrome c Is Released in a Reactive Oxygen Species-Dependent Manner and Is Degraded via Caspase-Like Proteases in Tobacco Bright-Yellow 2 Cells en Route to Heat Shock-Induced Cell Death

Rosa Anna Vacca; Daniela Valenti; Antonella Bobba; Riccardo Sandro Merafina; Salvatore Passarella; Ersilia Marra

To gain some insight into the mechanism of plant programmed cell death, certain features of cytochrome c (cyt c) release were investigated in heat-shocked tobacco (Nicotiana tabacum) Bright-Yellow 2 cells in the 2- to 6-h time range. We found that 2 h after heat shock, cyt c is released from intact mitochondria into the cytoplasm as a functionally active protein. Such a release did not occur in the presence of superoxide anion dismutase and catalase, thus showing that it depends on reactive oxygen species (ROS). Interestingly, ROS production due to xanthine plus xanthine oxidase results in cyt c release in sister control cultures. Maximal cyt c release was found 2 h after heat shock; later, activation of caspase-3-like protease was found to increase with time. Activation of this protease did not occur in the presence of ROS scavenger enzymes. The released cyt c was found to be progressively degraded in a manner prevented by either the broad-range caspase inhibitor (zVAD-fmk) or the specific inhibitor of caspase-3 (AC-DEVD-CHO), which have no effect on cyt c release. In the presence of these inhibitors, a significant increase in survival of the cells undergoing programmed cell death was found. We conclude that ROS can trigger release of cyt c, but do not cause cell death, which requires caspase-like activation.


Journal of Neurochemistry | 2002

Glutamate Neurotoxicity in Rat Cerebellar Granule Cells: A Major Role for Xanthine Oxidase in Oxygen Radical Formation

Anna Atlante; Sara Gagliardi; G. M. Minervini; M. T. Ciotti; Ersilia Marra; Pietro Calissano

Abstract: To gain insight into the mechanism through which the neurotransmitter glutamate causally participates in several neurological diseases, in vitro cultured cerebellar granule cells were exposed to glutamate and oxygen radical production was investigated. To this aim, a novel procedure was developed to detect oxygen radicals; the fluorescent dye 2′,7′‐dichlorofluorescein was used to detect production of peroxides, and a specific search for the possible conversion of the enzyme xanthine dehydrogenase into xanthine oxidase after the excitotoxic glutamate pulse was undertaken. A 100 µM glutamate pulse administered to 7‐day‐old cerebellar granule cells is accompanied by the onset of neuronal death, the appearance of xanthine oxidase, and production of oxygen radicals. Xanthine oxidase activation and superoxide (O2•−) production are completely inhibited by concomitant incubation of glutamate with MK‐801, a specific NMDA receptor antagonist, or by chelation of external calcium with EGTA. Partial inhibition of both cell death and parallel production of reactive oxygen species is achieved with allopurinol, a xanthine oxidase inhibitor, leupeptin, a protease inhibitor, reducing agents such as glutathione or dithiothreitol, antioxidants such as vitamin E and vitamin C, and externally added superoxide dismutase. It is concluded that glutamate‐triggered, NMDA‐mediated, massive Ca2+ influx induces rapid conversion of xanthine dehydrogenase into xanthine oxidase with subsequent production of reactive oxygen species that most probably have a causal involvement in the initial steps of the series of intracellular events leading to neuronal degeneration and death.


Biochemical and Biophysical Research Communications | 1989

Increase in RNA and protein synthesis by mitochondria irradiated with helium-neon laser.

Margherita Greco; Gabriella Guida; Elda Perlino; Ersilia Marra; E. Quagliariello

To gain further insight into the mechanism of cell photostimulation by laser light, both RNA and protein synthesis were measured in mitochondria irradiated with the low power continuous wave He-Ne laser (Energy dose: 5 Joules/cm2). Following mitochondrial irradiation, both the rate and amount of incorporation of alpha-[32P]UTP and L-[35S]methionine, used to monitor RNA and protein synthesis respectively, proved to increase. Electrophoretic analysis made of the synthesis products clearly shows that He-Ne laser irradiation stimulates the synthesis of all mitochondrial transcription and translation products.


Cell Death & Differentiation | 2009

Mitochondrial DNA depletion in prostate epithelial cells promotes anoikis resistance and invasion through activation of PI3K/Akt2

Loredana Moro; Arnaldo A. Arbini; Jorge L. Yao; P A di Sant'Agnese; Ersilia Marra; Margherita Greco

Neoplastic transformation of prostate epithelium involves aberrant activation of anti-apoptotic and pro-invasive pathways triggered by multiple poorly understood genetic events. We demonstrated earlier that depletion of mitochondrial DNA (mtDNA) induces prostate cancer progression. Here, using normal prostate epithelial PNT1A cells we demonstrate that mtDNA depletion prevents detachment-induced apoptosis (anoikis) and promotes migratory capabilities onto basement membrane proteins through upregulation of p85 and p110 phosphatidylinositol 3-kinase (PI3K) subunits, which results in Akt2 activation and phosphorylation of downstream substrates GSK3β, c-Myc, MMP-9, Mdm2, and p53. Pharmacological or genetic PI3K inhibition, siRNA-mediated Akt2 depletion, as well as mtDNA reconstitution were sufficient to restore sensitivity to anoikis and curtail cell migration. Moreover, Akt2 activation induced glucose transporter 1 (GLUT1) expression, glucose uptake, and lactate production, common phenotypic changes seen in neoplastic cells. In keeping with these findings, several prostate carcinoma cell lines displayed reduced mtDNA content and increased PI3K/Akt2 levels when compared to normal PNT1A cells, and Akt2 downregulation prevented their survival, migration and glycolytic metabolism. On a tissue microarray, we also found a statistically significant decrease in mtDNA-encoded cytochrome oxidase I in prostate carcinomas. Taken together, these results provide novel mechanistic evidence supporting the notion that mtDNA mutations may confer survival and migratory advantage to prostate cancer cells through Akt2 signaling.


FEBS Letters | 1999

Early release and subsequent caspase‐mediated degradation of cytochrome c in apoptotic cerebellar granule cells

Antonella Bobba; Anna Atlante; Sergio Giannattasio; G. Sgaramella; Pietro Calissano; Ersilia Marra

Cytochrome c (cyt c) release was investigated in cerebellar granule cells used as an in vitro neuronal model of apoptosis. We have found that cyt c is released into the cytoplasm as an intact, functionally active protein, that this event occurs early, in the commitment phase of the apoptotic process, and that after accumulation, this protein is progressively degraded. Degradation, but not release, is fully blocked by benzyloxycarbonyl‐Val‐Ala‐Asp‐fluoromethylchetone (z‐VAD‐fmk). On the basis of previous findings obtained in the same neuronal population undergoing excitotoxic death, it is hypothesized that release of cyt c may be part of a cellular attempt to maintain production of ATP via cytochrome oxidase, which is reduced by cytosolic NADH in a cytochrome b 5‐soluble cyt c‐mediated fashion.


Biochemical Journal | 2011

Deficit of complex I activity in human skin fibroblasts with chromosome 21 trisomy and overproduction of reactive oxygen species by mitochondria: involvement of the cAMP/PKA signalling pathway

Daniela Valenti; Gabriella Arcangela Manente; Laura Moro; Ersilia Marra; Rosa Anna Vacca

DS (Downs syndrome) is the most common human aneuploidy associated with mental retardation and early neurodegeneration. Mitochondrial dysfunction has emerged as a crucial factor in the pathogenesis of numerous neurological disorders including DS, but the cause of mitochondrial damage remains elusive. In the present study, we identified new molecular events involved in mitochondrial dysfunction which could play a role in DS pathogenesis. We analysed mitochondrial respiratory chain function in DS-HSFs (Downs syndrome human foetal skin fibroblasts; human foetal skin fibroblasts with chromosome 21 trisomy) and found a selective deficit in the catalytic efficiency of mitochondrial complex I. The complex I deficit was associated with a decrease in cAMP-dependent phosphorylation of the 18 kDa subunit of the complex, due to a decrease in PKA (protein kinase A) activity related to reduced basal levels of cAMP. Consistently, exposure of DS-HSFs to db-cAMP (dibutyryl-cAMP), a membrane-permeable cAMP analogue, stimulated PKA activity and consequently rescued the deficit of both the cAMP-dependent phosphorylation and the catalytic activity of complex I; conversely H89, a specific PKA inhibitor, suppressed these cAMP-dependent activations. Furthermore, in the present paper we report a 3-fold increase in cellular levels of ROS (reactive oxygen species), in particular superoxide anion, mainly produced by DS-HSF mitochondria. ROS accumulation was prevented by db-cAMP-dependent activation of complex I, suggesting its involvement in ROS production. Taken together, the results of the present study suggest that the drastic decrease in basal cAMP levels observed in DS-HSFs participates in the complex I deficit and overproduction of ROS by DS-HSF mitochondria.


FEBS Letters | 2006

YCA1 participates in the acetic acid induced yeast programmed cell death also in a manner unrelated to its caspase-like activity

Nicoletta Guaragnella; Clara Pereira; Maria João Sousa; Lucia Antonacci; Salvatore Passarella; Manuela Côrte-Real; Ersilia Marra; Sergio Giannattasio

Yeast cells lacking the metacaspase‐encoding gene YCA1 (Δyca1) were compared with wild‐type (WT) cells with respect to the occurrence, nature and time course of acetic‐acid triggered death. We show that Δyca1 cells undergo programmed cell death (PCD) with a rate lower than that of the WT and that PCD in WT cells is caused at least in part by the caspase activity of Yca1p. Since in Δyca1 cells this effect is lost, but z‐VAD‐fmk does not prevent both WT and Δyca1 cell death, PCD in WT cells occurs via a Yca1p caspase and a non‐caspase route with similar characteristics.

Collaboration


Dive into the Ersilia Marra's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shawn Doonan

University of East London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Loredana Moro

University of Texas Southwestern Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge