Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ersin Yumer is active.

Publication


Featured researches published by Ersin Yumer.


computer vision and pattern recognition | 2017

Transformation-Grounded Image Generation Network for Novel 3D View Synthesis

Eunbyung Park; Jimei Yang; Ersin Yumer; Duygu Ceylan; Alexander C. Berg

We present a transformation-grounded image generation network for novel 3D view synthesis from a single image. Our approach first explicitly infers the parts of the geometry visible both in the input and novel views and then casts the remaining synthesis problem as image completion. Specifically, we both predict a flow to move the pixels from the input to the novel view along with a novel visibility map that helps deal with occulsion/disocculsion. Next, conditioned on those intermediate results, we hallucinate (infer) parts of the object invisible in the input image. In addition to the new network structure, training with a combination of adversarial and perceptual loss results in a reduction in common artifacts of novel view synthesis such as distortions and holes, while successfully generating high frequency details and preserving visual aspects of the input image. We evaluate our approach on a wide range of synthetic and real examples. Both qualitative and quantitative results show our method achieves significantly better results compared to existing methods.


computer vision and pattern recognition | 2017

Physically-Based Rendering for Indoor Scene Understanding Using Convolutional Neural Networks

Yinda Zhang; Shuran Song; Ersin Yumer; Manolis Savva; Joon-Young Lee; Hailin Jin; Thomas A. Funkhouser

Indoor scene understanding is central to applications such as robot navigation and human companion assistance. Over the last years, data-driven deep neural networks have outperformed many traditional approaches thanks to their representation learning capabilities. One of the bottlenecks in training for better representations is the amount of available per-pixel ground truth data that is required for core scene understanding tasks such as semantic segmentation, normal prediction, and object boundary detection. To address this problem, a number of works proposed using synthetic data. However, a systematic study of how such synthetic data is generated is missing. In this work, we introduce a large-scale synthetic dataset with 500K physically-based rendered images from 45K realistic 3D indoor scenes. We study the effects of rendering methods and scene lighting on training for three computer vision tasks: surface normal prediction, semantic segmentation, and object boundary detection. This study provides insights into the best practices for training with synthetic data (more realistic rendering is worth it) and shows that pretraining with our new synthetic dataset can improve results beyond the current state of the art on all three tasks.


computer vision and pattern recognition | 2017

Neural Face Editing with Intrinsic Image Disentangling

Zhixin Shu; Ersin Yumer; Sunil Hadap; Kalyan Sunkavalli; Eli Shechtman; Dimitris Samaras

Traditional face editing methods often require a number of sophisticated and task specific algorithms to be applied one after the other — a process that is tedious, fragile, and computationally intensive. In this paper, we propose an end-to-end generative adversarial network that infers a face-specific disentangled representation of intrinsic face properties, including shape (i.e. normals), albedo, and lighting, and an alpha matte. We show that this network can be trained on in-the-wild images by incorporating an in-network physically-based image formation module and appropriate loss functions. Our disentangling latent representation allows for semantically relevant edits, where one aspect of facial appearance can be manipulated while keeping orthogonal properties fixed, and we demonstrate its use for a number of facial editing applications.


ACM Transactions on Graphics | 2017

Convolutional neural networks on surfaces via seamless toric covers

Haggai Maron; Meirav Galun; Noam Aigerman; Miri Trope; Nadav Dym; Ersin Yumer; Vladimir G. Kim; Yaron Lipman

The recent success of convolutional neural networks (CNNs) for image processing tasks is inspiring research efforts attempting to achieve similar success for geometric tasks. One of the main challenges in applying CNNs to surfaces is defining a natural convolution operator on surfaces. In this paper we present a method for applying deep learning to sphere-type shapes using a global seamless parameterization to a planar flat-torus, for which the convolution operator is well defined. As a result, the standard deep learning framework can be readily applied for learning semantic, high-level properties of the shape. An indication of our success in bridging the gap between images and surfaces is the fact that our algorithm succeeds in learning semantic information from an input of raw low-dimensional feature vectors. We demonstrate the usefulness of our approach by presenting two applications: human body segmentation, and automatic landmark detection on anatomical surfaces. We show that our algorithm compares favorably with competing geometric deep-learning algorithms for segmentation tasks, and is able to produce meaningful correspondences on anatomical surfaces where hand-crafted features are bound to fail.


ACM Transactions on Graphics | 2017

GRASS: generative recursive autoencoders for shape structures

Jun Li; Kai Xu; Siddhartha Chaudhuri; Ersin Yumer; Hao Zhang; Leonidas J. Guibas

We introduce a novel neural network architecture for encoding and synthesis of 3D shapes, particularly their structures. Our key insight is that 3D shapes are effectively characterized by their hierarchical organization of parts, which reflects fundamental intra-shape relationships such as adjacency and symmetry. We develop a recursive neural net (RvNN) based autoencoder to map a flat, unlabeled, arbitrary part layout to a compact code. The code effectively captures hierarchical structures of man-made 3D objects of varying structural complexities despite being fixed-dimensional: an associated decoder maps a code back to a full hierarchy. The learned bidirectional mapping is further tuned using an adversarial setup to yield a generative model of plausible structures, from which novel structures can be sampled. Finally, our structure synthesis framework is augmented by a second trained module that produces fine-grained part geometry, conditioned on global and local structural context, leading to a full generative pipeline for 3D shapes. We demonstrate that without supervision, our network learns meaningful structural hierarchies adhering to perceptual grouping principles, produces compact codes which enable applications such as shape classification and partial matching, and supports shape synthesis and interpolation with significant variations in topology and geometry.


IEEE Transactions on Visualization and Computer Graphics | 2017

Shape Synthesis from Sketches via Procedural Models and Convolutional Networks

Haibin Huang; Evangelos Kalogerakis; Ersin Yumer; Radomir Mech

Procedural modeling techniques can produce high quality visual content through complex rule sets. However, controlling the outputs of these techniques for design purposes is often notoriously difficult for users due to the large number of parameters involved in these rule sets and also their non-linear relationship to the resulting content. To circumvent this problem, we present a sketch-based approach to procedural modeling. Given an approximate and abstract hand-drawn 2D sketch provided by a user, our algorithm automatically computes a set of procedural model parameters, which in turn yield multiple, detailed output shapes that resemble the users input sketch. The user can then select an output shape, or further modify the sketch to explore alternative ones. At the heart of our approach is a deep Convolutional Neural Network (CNN) that is trained to map sketches to procedural model parameters. The network is trained by large amounts of automatically generated synthetic line drawings. By using an intuitive medium, i.e., freehand sketching as input, users are set free from manually adjusting procedural model parameters, yet they are still able to create high quality content. We demonstrate the accuracy and efficacy of our method in a variety of procedural modeling scenarios including design of man-made and organic shapes.


international conference on computer graphics and interactive techniques | 2017

Learning Local Shape Descriptors from Part Correspondences with Multiview Convolutional Networks

Haibin Huang; Evangelos Kalogerakis; Siddhartha Chaudhuri; Duygu Ceylan; Vladimir G. Kim; Ersin Yumer

We present a new local descriptor for 3D shapes, directly applicable to a wide range of shape analysis problems such as point correspondences, semantic segmentation, affordance prediction, and shape-to-scan matching. The descriptor is produced by a convolutional network that is trained to embed geometrically and semantically similar points close to one another in descriptor space. The network processes surface neighborhoods around points on a shape that are captured at multiple scales by a succession of progressively zoomed-out views, taken from carefully selected camera positions. We leverage two extremely large sources of data to train our network. First, since our network processes rendered views in the form of 2D images, we repurpose architectures pretrained on massive image datasets. Second, we automatically generate a synthetic dense point correspondence dataset by nonrigid alignment of corresponding shape parts in a large collection of segmented 3D models. As a result of these design choices, our network effectively encodes multiscale local context and fine-grained surface detail. Our network can be trained to produce either category-specific descriptors or more generic descriptors by learning from multiple shape categories. Once trained, at test time, the network extracts local descriptors for shapes without requiring any part segmentation as input. Our method can produce effective local descriptors even for shapes whose category is unknown or different from the ones used while training. We demonstrate through several experiments that our learned local descriptors are more discriminative compared to state-of-the-art alternatives and are effective in a variety of shape analysis applications.


ACM Transactions on Graphics | 2017

Learning hierarchical shape segmentation and labeling from online repositories

Li Yi; Leonidas J. Guibas; Aaron Hertzmann; Vladimir G. Kim; Hao Su; Ersin Yumer

We propose a method for converting geometric shapes into hierarchically segmented parts with part labels. Our key idea is to train category-specific models from the scene graphs and part names that accompany 3D shapes in public repositories. These freely-available annotations represent an enormous, untapped source of information on geometry. However, because the models and corresponding scene graphs are created by a wide range of modelers with different levels of expertise, modeling tools, and objectives, these models have very inconsistent segmentations and hierarchies with sparse and noisy textual tags. Our method involves two analysis steps. First, we perform a joint optimization to simultaneously cluster and label parts in the database while also inferring a canonical tag dictionary and part hierarchy. We then use this labeled data to train a method for hierarchical segmentation and labeling of new 3D shapes. We demonstrate that our method can mine complex information, detecting hierarchies in man-made objects and their constituent parts, obtaining finer scale details than existing alternatives. We also show that, by performing domain transfer using a few supervised examples, our technique outperforms fully-supervised techniques that require hundreds of manually-labeled models.


international conference on computer vision | 2017

3D-PRNN: Generating Shape Primitives with Recurrent Neural Networks

Chuhang Zou; Ersin Yumer; Jimei Yang; Duygu Ceylan; Derek Hoiem

The success of various applications including robotics, digital content creation, and visualization demand a structured and abstract representation of the 3D world from limited sensor data. Inspired by the nature of human perception of 3D shapes as a collection of simple parts, we explore such an abstract shape representation based on primitives. Given a single depth image of an object, we present 3DPRNN, a generative recurrent neural network that synthesizes multiple plausible shapes composed of a set of primitives. Our generative model encodes symmetry characteristics of common man-made objects, preserves long-range structural coherence, and describes objects of varying complexity with a compact representation. We also propose a method based on Gaussian Fields to generate a large scale dataset of primitive-based shape representations to train our network. We evaluate our approach on a wide range of examples and show that it outperforms nearest-neighbor based shape retrieval methods and is on-par with voxelbased generative models while using a significantly reduced parameter space.


ACM Transactions on Graphics | 2017

Learning to predict indoor illumination from a single image

Marc-André Gardner; Kalyan Sunkavalli; Ersin Yumer; Xiaohui Shen; Emiliano Gambaretto; Christian Gagné; Jean-François Lalonde

We propose an automatic method to infer high dynamic range illumination from a single, limited field-of-view, low dynamic range photograph of an indoor scene. In contrast to previous work that relies on specialized image capture, user input, and/or simple scene models, we train an end-to-end deep neural network that directly regresses a limited field-of-view photo to HDR illumination, without strong assumptions on scene geometry, material properties, or lighting. We show that this can be accomplished in a three step process: 1) we train a robust lighting classifier to automatically annotate the location of light sources in a large dataset of LDR environment maps, 2) we use these annotations to train a deep neural network that predicts the location of lights in a scene from a single limited field-of-view photo, and 3) we fine-tune this network using a small dataset of HDR environment maps to predict light intensities. This allows us to automatically recover high-quality HDR illumination estimates that significantly outperform previous state-of-the-art methods. Consequently, using our illumination estimates for applications like 3D object insertion, produces photo-realistic results that we validate via a perceptual user study.

Collaboration


Dive into the Ersin Yumer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Niloy J. Mitra

University College London

View shared research outputs
Top Co-Authors

Avatar

Evangelos Kalogerakis

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar

Haibin Huang

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge