Erwann Bocquillon
École Normale Supérieure
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Erwann Bocquillon.
Nature Communications | 2013
Erwann Bocquillon; Vincent Freulon; Jean-Marc Berroir; Pascal Degiovanni; B. Plaçais; A. Cavanna; Yun Jin; Gwendal Fève
Coulomb interactions have a major role in one-dimensional electronic transport. They modify the nature of the elementary excitations from Landau quasiparticles in higher dimensions to collective excitations in one dimension. Here we report the direct observation of the collective neutral and charge modes of the two chiral co-propagating edge channels of opposite spins of the quantum Hall effect at filling factor 2. Generating a charge density wave at frequency f in the outer channel, we measure the current induced by inter-channel Coulomb interaction in the inner channel after a 3-μm propagation length. Varying the driving frequency from 0.7 to 11 GHz, we observe damped oscillations in the induced current that result from the phase shift between the fast charge and slow neutral eigenmodes. We measure the dispersion relation and dissipation of the neutral mode from which we deduce quantitative information on the interaction range and parameters.
Physical Review B | 2013
Dario Ferraro; Alexandre Feller; Arnaud Ghibaudo; Etienne Thibierge; Erwann Bocquillon; Gwendal Fève; Charles Grenier; Pascal Degiovanni
Recent electron quantum optics experiments performed with on-demand single electron sources call for a mixed time/frequency approach to electronic quantum coherence. Here, we present a Wigner function representation of first-order electronic coherence and show that it provides a natural visualization of the excitations emitted by recently demonstrated single electron sources. It also gives a unified perspective on single particle and two particle interferometry experiments. In particular, we introduce a non-classicality criterion for single electron coherence and discuss it in the context of Mach-Zehnder interferometry. Finally, the electronic Hanbury Brown and Twiss and the Hong-Ou-Mandel experiments are interpreted in terms of overlap of Wigner function, thus connecting them to signal processing.
Science | 2013
Erwann Bocquillon; Vincent Freulon; Jean-Marc Berroir; Pascal Degiovanni; B. Plaçais; A. Cavanna; Y. Jin; Gwendal Fève
Interfering Single Electrons Quantum information processing requires the generation of indistinguishable and coherent particles. While these have been demonstrated for photons, carrying it over for electrons and the possibility of quantum electronic implementations has been challenging. Using two independent single-electron sources patterned into a two-dimensional electron gas, Bocquillon et al. (p. 1054, published online 24 January; see the Perspective by Schönenberger) performed single-electron interference experiments. The results demonstrate that the generated electrons can possess the desired properties for potential quantum applications. The interference of single electrons emitted from independent sources is demonstrated. [Also see Perspective by Schönenberger] The on-demand emission of coherent and indistinguishable electrons by independent synchronized sources is a challenging task of quantum electronics, in particular regarding its application for quantum information processing. Using two independent on-demand electron sources, we triggered the emission of two single-electron wave packets at different inputs of an electronic beam splitter. Whereas classical particles would be randomly partitioned by the splitter, we observed two-particle interference resulting from quantum exchange. Both electrons, emitted in indistinguishable wave packets with synchronized arrival time on the splitter, exited in different outputs as recorded by the low-frequency current noise. The demonstration of two-electron interference provides the possibility of manipulating coherent and indistinguishable single-electron wave packets in quantum conductors.
Physical Review Letters | 2012
Erwann Bocquillon; François Parmentier; Charles Grenier; Jean-Marc Berroir; Pascal Degiovanni; D. C. Glattli; B. Plaçais; A. Cavanna; Y. Jin; Gwendal Fève
We have realized a quantum optics like Hanbury Brown-Twiss (HBT) experiment by partitioning, on an electronic beam splitter, single elementary electronic excitations produced one by one by an on-demand emitter. We show that the measurement of the output currents correlations in the HBT geometry provides a direct counting, at the single charge level, of the elementary excitations (electron-hole pairs) generated by the emitter at each cycle. We observe the antibunching of low energy excitations emitted by the source with thermal excitations of the Fermi sea already present in the input leads of the splitter, which suppresses their contribution to the partition noise. This effect is used to probe the energy distribution of the emitted wave packets.
Annalen der Physik | 2014
Erwann Bocquillon; Vincent Freulon; François Parmentier; Jean-Marc Berroir; B. Plaçais; C. Wahl; Jérôme Rech; T. Jonckheere; Thierry Martin; Charles Grenier; Dario Ferraro; Pascal Degiovanni; Gwendal Fève
The edge channels of the quantum Hall effect provide one dimensional chiral and ballistic wires along which electrons can be guided in an optics-like setup. Electronic propagation can then be analyzed using concepts and tools derived from optics. After a brief review of electron optics experiments performed using stationary current sources which continuously emit electrons in the conductor, this paper focuses on triggered sources, which can generate on-demand a single particle state. It first outlines the electron optics formalism and its analogies and differences with photon optics and then turns to the presentation of single electron emitters and their characterization through the measurements of the average electrical current and its correlations. This is followed by a discussion of electron quantum optics experiments in the Hanbury-Brown and Twiss geometry where two-particle interferences occur. Finally, Coulomb interactions effects and their influence on single electron states are considered.
Nature Communications | 2016
Jonas Wiedenmann; Erwann Bocquillon; R. S. Deacon; Simon Hartinger; Oliver Herrmann; Teun M. Klapwijk; Luis Maier; Christopher P. Ames; Christoph Brüne; C. Gould; A. Oiwa; Koji Ishibashi; S. Tarucha; H. Buhmann; L. W. Molenkamp
The Josephson effect describes the generic appearance of a supercurrent in a weak link between two superconductors. Its exact physical nature deeply influences the properties of the supercurrent. In recent years, considerable efforts have focused on the coupling of superconductors to the surface states of a three-dimensional topological insulator. In such a material, an unconventional induced p-wave superconductivity should occur, with a doublet of topologically protected gapless Andreev bound states, whose energies vary 4π-periodically with the superconducting phase difference across the junction. In this article, we report the observation of an anomalous response to rf irradiation in a Josephson junction made of a HgTe weak link. The response is understood as due to a 4π-periodic contribution to the supercurrent, and its amplitude is compatible with the expected contribution of a gapless Andreev doublet. Our work opens the way to more elaborate experiments to investigate the induced superconductivity in a three-dimensional insulator.
Physical Review B | 2012
François Parmentier; Erwann Bocquillon; Jean-Marc Berroir; D. C. Glattli; B. Plaçais; Gwendal Fève; Mathias Albert; Christian Flindt; Markus Buttiker
The controlled and accurate emission of coherent electronic wave packets is of prime importance for future applications of nano-scale electronics. Here we present a theoretical and experimental analysis of the finite-frequency noise spectrum of a periodically driven single electron emitter. The electron source consists of a mesoscopic capacitor that emits single electrons and holes into a chiral edge state of a quantum Hall sample. We compare experimental results with two complementary theoretical descriptions: On one hand, the Floquet scattering theory which leads to accurate numerical results for the noise spectrum under all relevant operating conditions. On the other hand, a semi-classical model which enables us to develop an analytic description of the main sources of noise when the emitter is operated under optimal conditions. We find excellent agreement between experiment and theory. Importantly, the noise spectrum provides us with an accurate description and characterization of the mesoscopic capacitor when operated as a periodic single electron emitter.
New Journal of Physics | 2011
Charles Grenier; Rémy Hervé; Erwann Bocquillon; François Parmentier; B. Plaçais; Jean-Marc Berroir; Gwendal Fève; Pascal Degiovanni
Electron quantum optics aims at the controlled manipulation and measurement of the quantum state of a single to few electrons in metallic nanostructures comparable to recent achievements with microwave photons, light or cold atoms. Mach-Zenhder interference experiments in integer quantum Hall edge channels as well as the demonstration of an on-demand single electron source have risen the hope for electron quantum optics experiments in ballistic conductors. However the wavefunction of a coherent single electron excitation has never been imaged. Here, we propose a quantum tomography protocol to measure single electron coherence in quantum Hall edge channels analogous to homodyne tomography in quantum optics. Single electron quantum tomography would be a major step in electron quantum optics with applications ranging from characterization of single to few electron sources to quantitative studies of single electron decoherence in nanostructures. We discuss how this proposal could be implemented using recently developed ultrahigh sensitivity noise measurement schemes.
Nature Nanotechnology | 2016
Erwann Bocquillon; R. S. Deacon; Jonas Wiedenmann; Philipp Leubner; Teunis M. Klapwijk; Christoph Brüne; Koji Ishibashi; H. Buhmann; L. W. Molenkamp
In recent years, Majorana physics has attracted considerable attention because of exotic new phenomena and its prospects for fault-tolerant topological quantum computation. To this end, one needs to engineer the interplay between superconductivity and electronic properties in a topological insulator, but experimental work remains scarce and ambiguous. Here, we report experimental evidence for topological superconductivity induced in a HgTe quantum well, a 2D topological insulator that exhibits the quantum spin Hall (QSH) effect. The a.c. Josephson effect demonstrates that the supercurrent has a 4π periodicity in the superconducting phase difference, as indicated by a doubling of the voltage step for multiple Shapiro steps. In addition, this response like that of a superconducting quantum interference device to a perpendicular magnetic field shows that the 4π-periodic supercurrent originates from states located on the edges of the junction. Both features appear strongest towards the QSH regime, and thus provide evidence for induced topological superconductivity in the QSH edge states.
Physical Review X | 2017
R. S. Deacon; Jonas Wiedenmann; Erwann Bocquillon; Fernando Domínguez; Teun M. Klapwijk; Philipp Leubner; Christoph Brune; E. M. Hankiewicz; S. Tarucha; Koji Ishibashi; H. Buhmann; L. W. Molenkamp
Frequency analysis of the rf emission of oscillating Josephson supercurrent is a powerful passive way of probing properties of topological Josephson junctions. In particular, measurements of the Josephson emission enables to detect the expected presence of topological gapless Andreev bound states that give rise to emission at half the Josephson frequency