Erwin E. Sterchi
University of Bern
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Erwin E. Sterchi.
Biochemical Journal | 2004
Markus-N. Kruse; Christoph R. Becker; Daniel Lottaz; Danny Köhler; Irene Yiallouros; Hans-Willi Krell; Erwin E. Sterchi; Walter Stöcker
Meprin is a zinc endopeptidase of the astacin family, which is expressed as a membrane-bound or secreted protein in mammalian epithelial cells, in intestinal leucocytes and in certain cancer cells. There are two types of meprin subunits, alpha and beta, which form disulphide-bonded homo- and hetero-oligomers. Here we report on the cleavage of matrix proteins by hmeprin (human meprin) alpha and beta homo-oligomers, and on the interactions of these enzymes with inhibitors. Despite their completely different cleavage specificities, both hmeprin alpha and beta are able to hydrolyse basement membrane components such as collagen IV, nidogen-1 and fibronectin. However, they are inactive against intact collagen I. Hence the matrix-cleaving activity of hmeprin resembles that of gelatinases rather than collagenases. Hmeprin is inhibited by hydroxamic acid derivatives such as batimastat, galardin and Pro-Leu-Gly-hydroxamate, by TAPI-0 (tumour necrosis factor alpha protease inhibitor-0) and TAPI-2, and by thiol-based compounds such as captopril. Therapeutic targets for these inhibitors are MMPs (matrix metalloproteases), TACE (tumour necrosis factor alpha-converting enzyme) and angiotensin-converting enzyme respectively. The most effective inhibitor of hmeprin alpha in the present study was the naturally occurring hydroxamate actinonin ( K(i)=20 nM). The marked variance in the cleavage specificities of hmeprin alpha and beta is reflected by their interaction with the TACE inhibitor Ro 32-7315, whose affinity for the beta subunit (IC50=1.6 mM) is weaker by three orders of magnitude than that for the alpha subunit ( K(i)=1.6 microM). MMP inhibitors such as the pyrimidine-2,4,6-trione derivative Ro 28-2653 that are more specific for gelatinases do not bind to hmeprin, presumably due to the subtle differences in the mode of zinc binding and active-site structure between the astacins and the MMPs.
Proceedings of the National Academy of Sciences of the United States of America | 2003
Buford L. Nichols; Stephen E. Avery; Partha Sen; Dallas M. Swallow; Dagmar Hahn; Erwin E. Sterchi
Brush-border maltase-glucoamylase (MGA) activity serves as the final step of small intestinal digestion of linear regions of dietary starch to glucose. Brush-border sucrase-isomaltase (SI) activity is complementary, through digestion of branched starch linkages. Here we report the cloning and sequencing of human MGA gene and demonstrate its close evolutionary relationship to SI. The gene is ≈82,000 bp long and located at chromosome 7q34. Forty-eight exons were identified. The 5′ gene product, when expressed as the N-terminal protein sequence, hydrolyzes maltose and starch, but not sucrose, and is thus distinct from SI. The catalytic residue was identified by mutation of an aspartic acid and was found to be identical with that described for SI. The exon structures of MGA and SI were identical. This homology of genomic structure is even more impressive than the previously reported 59% amino acid sequence identity. The shared exon structures and peptide domains, including proton donors, suggest that MGA and SI evolved by duplication of an ancestral gene, which itself had already undergone tandem gene duplication. The complementary human enzyme activities allow digestion of the starches of plant origin that make up two-thirds of most diets.
Journal of Biological Chemistry | 2008
David A. Bergin; Catherine M. Greene; Erwin E. Sterchi; Cliona Kenna; Patrick Geraghty; Abderrazzaq Belaaouaj; Clifford C. Taggart; Shane J. O'Neill; Noel G. McElvaney
Neutrophil Elastase (NE) is a pro-inflammatory protease present at higher than normal levels in the lung during inflammatory disease. NE regulates IL-8 production from airway epithelial cells and can activate both EGFR and TLR4. TACE/ADAM17 has been reported to trans-activate EGFR in response to NE. Here, using 16HBE14o-human bronchial epithelial cells we demonstrate a new mechanism by which NE regulates both of these events. A high molecular weight soluble metalloprotease activity detectable only in supernatants from NE-treated cells by gelatin and casein zymography was confirmed to be meprin alpha by Western immunoblotting. In vitro studies demonstrated the ability of NE to activate meprin alpha, which in turn could release soluble TGFα and induce IL-8 production from 16HBE14o- cells. These effects were abrogated by actinonin, a specific meprin inhibitor. NE-induced IL-8 expression was also inhibited by meprin alpha siRNA. Immunoprecipitation studies detected EGFR/TLR4 complexes in NE-stimulated cells overexpressing these receptors. Confocal studies confirmed colocalization of EGFR and TLR4 in 16HBE14o- cells stimulated with meprin alpha. NFκB was also activated via MyD88 in these cells by meprin alpha. In bronchoalveolar lavage fluid from NE knock-out mice infected intra-tracheally with Pseudomonas aeruginosa meprin alpha was significantly decreased compared with control mice, and was significantly increased and correlated with NE activity, in bronchoalveolar lavage fluid from individuals with cystic fibrosis but not healthy controls. The data describe a previously unidentified lung metalloprotease meprin alpha, and its role in NE-induced EGFR and TLR4 activation and IL-8 production.
Journal of Clinical Investigation | 1988
Hassan Y. Naim; Jürgen Roth; Erwin E. Sterchi; M Lentze; P Milla; J Schmitz; Hans-Peter Hauri
Eight cases of congenital sucrase-isomaltase deficiency were studied at the subcellular and protein level with monoclonal antibodies against sucrase-isomaltase. At least three phenotypes were revealed: one in which sucrase-isomaltase protein accumulated intracellularly probably in the endoplasmic reticulum, as a membrane-associated high-mannose precursor, one in which the intracellular transport of the enzyme was apparently blocked in the Golgi apparatus, and one in which catalytically altered enzyme was transported to the cell surface. All patients expressed electrophoretically normal or near normal high-mannose sucrase-isomaltase. The results suggest that different, probably small, mutations in the sucrase-isomaltase gene lead to the synthesis of transport-incompetent or functionally altered enzyme which results in congenital sucrose intolerance.
Biological Chemistry | 2003
C. Becker; M.-N. Kruse; K. A. Slotty; D. Köhler; J. R. Harris; S. Rösmann; Erwin E. Sterchi; Walter Stöcker
Abstract Meprins are zinc-endopeptidases of the astacin family, which are expressed as membrane-bound or secreted forms in renal and intestinal brush-border membranes of mouse, rat and man. There are two types of meprin subunits, α and β, which form disulfide-bonded homo- and heterodimers; further oligomerization is mediated by non-covalent interactions. Both subunits are translated as proenzymes that have to be activated by removal of an N-terminal propeptide. In the gut, the most probable activator is trypsin. In addition, plasmin has been shown to activate the human α subunit in colorectal cancer tissue. In the present study we have overexpressed the human meprin α subunit and a His-tagged soluble tail-switchmutant of meprin β in Baculovirus-infected insect cells. The recombinant homo-oligomeric proteins were purified by gel filtration and affinity chromatography with yields of up to 10 mg/l cell culture medium and analyzed with regard to their activation mechanism. While both α and β homo-oligomers are activated by trypsin, only meprin α homo-oligomers are processed to their mature form by plasmin. These results indicate a different accessibility of the propeptide in meprin homo-oligomers and suggest an explanation for the appearance of meprin hetero-oligomers consisting of active α, but latent β subunits.
FEBS Journal | 2006
Elena J. Rossi; Lyann Sim; Douglas A. Kuntz; Dagmar Hahn; Blair D. Johnston; Ahmad Ghavami; Monica G. Szczepina; Nag S. Kumar; Erwin E. Sterchi; Buford L. Nichols; Brian Mario Pinto; David R. Rose
Inhibitors targeting pancreatic α‐amylase and intestinal α‐glucosidases delay glucose production following digestion and are currently used in the treatment of Type II diabetes. Maltase‐glucoamylase (MGA), a family 31 glycoside hydrolase, is an α‐glucosidase anchored in the membrane of small intestinal epithelial cells responsible for the final step of mammalian starch digestion leading to the release of glucose. This paper reports the production and purification of active human recombinant MGA amino terminal catalytic domain (MGAnt) from two different eukaryotic cell culture systems. MGAnt overexpressed in Drosophila cells was of quality and quantity suitable for kinetic and inhibition studies as well as future structural studies. Inhibition of MGAnt was tested with a group of prospective α‐glucosidase inhibitors modeled after salacinol, a naturally occurring α‐glucosidase inhibitor, and acarbose, a currently prescribed antidiabetic agent. Four synthetic inhibitors that bind and inhibit MGAnt activity better than acarbose, and at comparable levels to salacinol, were found. The inhibitors are derivatives of salacinol that contain either a selenium atom in place of sulfur in the five‐membered ring, or a longer polyhydroxylated, sulfated chain than salacinol. Six‐membered ring derivatives of salacinol and compounds modeled after miglitol were much less effective as MGAnt inhibitors. These results provide information on the inhibitory profile of MGAnt that will guide the development of new compounds having antidiabetic activity.
Journal of Investigative Dermatology | 2010
Daniel Kronenberg; Bernd Cem Bruns; Catherine Moali; Sandrine Vadon-Le Goff; Erwin E. Sterchi; Heiko Traupe; Markus Böhm; David J. S. Hulmes; Walter Stöcker; Christoph Becker-Pauly
Meprins α and β, a subgroup of zinc metalloproteinases belonging to the astacin family, are known to cleave components of the extracellular matrix, either during physiological remodeling or in pathological situations. In this study we present a new role for meprins in matrix assembly, namely the proteolytic processing of procollagens. Both meprins α and β release the N- and C-propeptides from procollagen III, with such processing events being critical steps in collagen fibril formation. In addition, both meprins cleave procollagen III at exactly the same site as the procollagen C-proteinases, including bone morphogenetic protein-1 (BMP-1) and other members of the tolloid proteinase family. Indeed, cleavage of procollagen III by meprins is more efficient than by BMP-1. In addition, unlike BMP-1, whose activity is stimulated by procollagen C-proteinase enhancer proteins (PCPEs), the activity of meprins on procollagen III is diminished by PCPE-1. Finally, following our earlier observations of meprin expression by human epidermal keratinocytes, meprin α is also shown to be expressed by human dermal fibroblasts. In the dermis of fibrotic skin (keloids), expression of meprin α increases and meprin β begins to be detected. Our study suggests that meprins could be important players in several remodeling processes involving collagen fiber deposition.
Journal of Biological Chemistry | 2005
Marwan Alfalah; Gabi Wetzel; Ina Fischer; Roger Busche; Erwin E. Sterchi; Klaus-Peter Zimmer; Hans-Peter Sallmann; Hassan Y. Naim
One sorting mechanism of apical and basolateral proteins in epithelial cells is based on their solubility profiles with Triton X-100. Nevertheless, apical proteins themselves are also segregated beyond the trans-Golgi network by virtue of their association or nonassociation with cholesterol/sphingolipid-rich microdomains (Jacob, R., and Naim, H. Y. (2001) Curr. Biol. 11, 1444–1450). Therefore, extractability with Triton X-100 does not constitute an absolute criterion of protein sorting. Here, we investigate the solubility patterns of apical and basolateral proteins with other detergents and demonstrate that the mild detergent Tween 20 is adequate to discriminate between apical and basolateral proteins during early stages in their biosynthesis. Although the mannose-rich forms of the apical proteins sucrase-isomaltase, lactase-phlorizin hydrolase, aminopeptidase N, and dipeptidylpeptidase IV reveal similar solubility profiles comprising soluble and nonsoluble fractions, the basolateral proteins, vesicular stomatitis virus G protein, major histocompatibility complex class I, and CD46 are entirely soluble with this detergent. The insoluble Tween 20 membranes are enriched in phosphatidylinositol and phosphatidylglycerol compatible with their synthesis in the endoplasmic reticulum and the existence of a novel class of detergent-resistant membranes. The association of the mannose-rich biosynthetic forms of the apical proteins, sucraseisomaltase, lactase-phlorizin hydrolase, aminopeptidase N, and dipeptidylpeptidase IV with the Tween 20-resistant membranes suggests an early polarized sorting mechanism prior to maturation in the Golgi apparatus.
Journal of Pediatric Gastroenterology and Nutrition | 2007
Roberto Quezada-Calvillo; Claudia C. Robayo-Torres; Zihua Ao; Bruce R. Hamaker; Andrea Quaroni; Gary D. Brayer; Erwin E. Sterchi; Susan S. Baker; Buford L. Nichols
Background: Starches are the major source of dietary glucose in weaned children and adults. However, small intestine α-glucogenesis by starch digestion is poorly understood due to substrate structural and chemical complexity, as well as the multiplicity of participating enzymes. Our objective was dissection of luminal and mucosal α-glucosidase activities participating in digestion of the soluble starch product maltodextrin (MDx). Patients and Methods: Immunoprecipitated assays were performed on biopsy specimens and isolated enterocytes with MDx substrate. Results: Mucosal sucrase-isomaltase (SI) and maltase-glucoamylase (MGAM) contributed 85% of total in vitro α-glucogenesis. Recombinant human pancreatic α-amylase alone contributed <15% of in vitro α-glucogenesis; however, α-amylase strongly amplified the mucosal α-glucogenic activities by preprocessing of starch to short glucose oligomer substrates. At low glucose oligomer concentrations, MGAM was 10 times more active than SI, but at higher concentrations it experienced substrate inhibition whereas SI was not affected. The in vitro results indicated that MGAM activity is inhibited by α-amylase digested starch product “brake” and contributes only 20% of mucosal α-glucogenic activity. SI contributes most of the α-glucogenic activity at higher oligomer substrate concentrations. Conclusions: MGAM primes and SI activity sustains and constrains prandial α-glucogenesis from starch oligomers at approximately 5% of the uninhibited rate. This coupled mucosal mechanism may contribute to highly efficient glucogenesis from low-starch diets and play a role in meeting the high requirement for glucose during childrens brain maturation. The brake could play a constraining role on rates of glucose production from higher-starch diets consumed by an older population at risk for degenerative metabolic disorders.
PLOS ONE | 2008
Maya Huguenin; Eliane J. Müller; Sandra Trachsel-Rösmann; Beatrice Oneda; Daniel Ambort; Erwin E. Sterchi; Daniel Lottaz
Background Meprin (EC 3.4.24.18), an astacin-like metalloprotease, is expressed in the epithelium of the intestine and kidney tubules and has been related to cancer, but the mechanistic links are unknown. Methodology/Principal Findings We used MDCK and Caco-2 cells stably transfected with meprinα and or meprinβ to establish models of renal and intestinal epithelial cells expressing this protease at physiological levels. In both models E-cadherin was cleaved, producing a cell-associated 97-kDa E-cadherin fragment, which was enhanced upon activation of the meprin zymogen and reduced in the presence of a meprin inhibitor. The cleavage site was localized in the extracellular domain adjacent to the plasma membrane. In vitro assays with purified components showed that the 97-kDa fragment was specifically generated by meprinβ, but not by ADAM-10 or MMP-7. Concomitantly with E-cadherin cleavage and degradation of the E-cadherin cytoplasmic tail, the plaque proteins β-catenin and plakoglobin were processed by an intracellular protease, whereas α-catenin, which does not bind directly to E-cadherin, remained intact. Using confocal microscopy, we observed a partial colocalization of meprinβ and E-cadherin at lateral membranes of incompletely polarized cells at preconfluent or early confluent stages. Meprinβ-expressing cells displayed a reduced strength of cell-cell contacts and a significantly lower tendency to form multicellular aggregates. Conclusions/Significance By identifying E-cadherin as a substrate for meprinβ in a cellular context, this study reveals a novel biological role of this protease in epithelial cells. Our results suggest a crucial role for meprinβ in the control of adhesiveness via cleavage of E-cadherin with potential implications in a wide range of biological processes including epithelial barrier function and cancer progression.