Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Erwin Kitzmueller is active.

Publication


Featured researches published by Erwin Kitzmueller.


Life Sciences | 1998

mRNA levels of the hypoxia inducible factor (HIF-1) and DNA repair genes in perinatal asphyxia of the rat.

Marina Chiappe-Gutierrez; Erwin Kitzmueller; Olga Labudova; Gerhard Fuerst; Harald Hoeger; Rosmarie Hardmeier; Hans Nohl; Lars Gille; Barbara Lubec

Hypoxia inducible factor 1 (HIF-1) is a transcription factor which is expressed, when mammalian cells are subjected to hypoxia, activating the transcription of genes encoding proteins thought important for maintaining oxygen hemostasis. The aim of the study was to evaluate HIF-1 mRNA levels in a non-invasive model of perinatal asphyxia (PA). Brain was taken for studies on HIF-1 alpha and beta 10 min following the asphyctic period. To rule out influences by the redox status we also determined antioxidant enzyme mRNA levels for superoxide dismutase, catalase, glutathion peroxidase and performed electron spin resonance studies. To study the link to protein phosphorylation as previously proposed, we evaluated mRNA levels for protein kinase C. As DNA breaks were reported to occur in PA, we determined mRNA levels of two genes representing DNA nucleotide excision repair, ERCC2 and ERCC3, and a DNA repair gene involved in the repair of oxidation mediated DNA damage, XRCC1. mRNAs for HIF-1 were not detectable following 5-20 minutes of asphyxia. The antioxidant enzymes did not show any changes during the asphyctic periods either and electron spin resonance failed to detect the presence of the hydroxyl radical. PKC significantly decreased with the length of the asphyctic period. ERCC2 and XRCC1 mRNAs were inducible during the acute phase of asphyxia indicating early repair phenomena. HIF-1 may not be relevant for periods of PA up to 20 minutes, the maximal survival time in our model. Neonatal factors may be responsible for that phenomenon although we cannot rule out that HIF-1 changes may occur at the protein level.


Life Sciences | 1999

Thyroid stimulating hormone — Receptor overexpression in brain of patients with Down Syndrome and Alzheimer's disease

Olga Labudova; Nigel J. Cairns; Thomas Koeck; Erwin Kitzmueller; Hermann Rink; Gert Lubec

Thyroid hormone abnormalities are strongly associated with Down Syndrome (DS) with elevated thyroid stimulating hormone (TSH) levels as the most consistent finding. Using subtractive hybridization for gene hunting we found significant overexpression of mRNA levels for the TSH-receptor (TSH-R) in brain of a fetus with DS. Based upon this observation we determined TSH-R protein levels in five brain regions of patients with DS (n=8), Alzheimer disease (AD, n=8) and controls (C, n=8). Western blots revealed significantly elevated immunoreactive TSH-R protein(s) 40 kD and 61 kD in temporal and frontal cortex of patients with DS and, unexpectedly, in AD. Levels for the 40 kD protein in temporal cortex were 1.00+/-0.036 (arbitrary units+/-SD) in C, 1.35+/-0.143 in DS, 1.52+/-0.128 in AD; in frontal cortex: 1.00+/-0.046 in C, 1.10+/-0.03 in DS, 1.10+/-0.038 in AD. Levels for the 61 kD protein in temporal cortex were 1.01+/-0.015 in C, 1.47+/-0.013 in DS, 1.623+/-0.026 in AD; in frontal cortex: 1.02+/-0.020 in C, 1.18 +/-0.123 in DS, 1.48+/-0.020 in AD. These results show that elevated brain immunoreactive TSH-R is not specific for DS and maybe reflecting apoptosis, a hallmark of both neurodegenerative disorders, as it is well-documented that the thyroid hormone system is involved in the control of programmed cell death.


Pediatric Research | 2000

Glucose transporters, hexokinase, and phosphofructokinase in brain of rats with perinatal asphyxia.

Barbara Lubec; Marina Chiappe-Gutierrez; Harald Hoeger; Erwin Kitzmueller; Gert Lubec

Transport by glucose transporters from blood to the brain during hypoxic-ischemic conditions is well studied. However, the recent availability of a clinically related animal model of perinatal asphyxia and the fact that no concomitant determination of glucose transporters, parameters for glucose utilization, brain glucose, and cerebral blood flow (CBF) have been reported and the early phase of perinatal asphyxia has never been studied led us to perform the following study. Cesarean section was performed on full-term pregnant rats. The obtained pups within patent uterus horns were placed into a water bath at 37°C from which they were subsequently removed after 5–20 min of graded asphyxia. Brain pH, brain tissue glucose, CBF, mRNA and activity of hexokinase and phosphofructokinase, and mRNA and protein of the glucose transporters GLUT1 and GLUT3 were determined. Brain pH decreased and brain tissue glucose and CBF increased with the length of the asphyctic period; hexokinase and phosphofructokinase mRNA and activity were unchanged during the observation period. The mRNA and protein of both glucose transporters were comparable between normoxic and asphyctic groups. We show that glucose transport and utilization are unchanged in the early phase of perinatal asphyxia at a time point when CBF and brain glucose are already significantly increased and severe acidosis is present.


Life Sciences | 1999

Increased steady state mRNA levels of DNA-repair genes XRCC1, ERCC2 and ERCC3 in brain of patients with Down syndrome.

Susanne Fang-Kircher; Olga Labudova; Erwin Kitzmueller; Hermann Rink; Nigel J. Cairns; Gert Lubec

Although deficient DNA-repair was proposed for neurodegenerative disorders including Down Syndrome (DS), repair genes for nucleotide excision repair or X-ray repair have not been studied in brain yet. As one of the hypotheses for the pathogenesis of brain damage in DS is oxidative stress and cells of patients with DS are more susceptible to ionizing irradiation, we decided to study ERCC2, ERCC3 and XRCC1, representatives of repair genes known to be involved in the repair of oxidative DNA-damage. mRNA steady state levels of ERCC2, ERCC3, XRCC1, a transcription activator (TAF-DBP) and an elongation factor (EF1A) were determined and normalized versus the housekeeping gene beta-actin in five individual brain regions of nine controls and nine DS patients. Although different in the individual regions, DNA-repair genes were consistently higher in temporal, parietal and occipital lobes of patients with DS accompanied by comparable changes of TFA-DBP and EF1A. Our results are the first to describe DNA-repair gene patterns in human brain regions providing the basis for further studies in this area. We showed that DNA-repair genes ERCC2 and ERCC3 (excision-repair-cross-complementing-) for nucleotide excision repair and XRCC1 (X-ray-repair-cross-complementing-) for X-ray-repair, were increased at the transcriptional level with the possible biological meaning that this increase may be compatible with permanent (oxidative?) DNA damage.


Experimental Neurology | 2000

Brain RNA polymerase and nucleolar structure in perinatal asphyxia of the rat.

Wilhelm Mosgoeller; Philomena Kastner; Susanne Fang-Kircher; Erwin Kitzmueller; H. Hoeger; Peter Seither; Olga Labudova; Gert Lubec; Barbara Lubec

Abstract Ribosomes are integral constitutens of the protein synthesis machinery. Polymerase I (POL I) is located in the nucleolus and transcribes the large ribosomal genes. POL I activity is decreased in ischemia but nothing is known so far on POL I in perinatal asphyxia. We investigated the involvement of POL I in a well-documented model of graded systemic asphyxia at the level of activity, mRNA, protein, and morphology. Caeserean section was performed at the 21st day of gestation. Rat pups still in the uterus horns were immerged in a water bath for asphyctic periods from 5–20 min. Brain was taken for measurement of pH, nuclear POL I activity, and mRNA steady state, and protein levels of RPA40, an essential subunit of POL I and III. Silver staining and transmission electron microscopy with morphometry when appropriate were used to examine the nucleolus. Brain pH and nuclear POL I activity decreased with the length of the asphyctic period while POL-I mRNA and protein levels were unchanged. Accompanying the decrease in brain pH we found significant changes of nucleolar structure in the course of perinatal asphyxia at the light and electron microscopic level. As early as ten min following the asphyctic insult, morphological disintegration of the nucleolus was observed. The changes became more dramatic with longer duration of perinatal asphyxia. We conclude that severe acidosis may be responsible for decreased POL activity and for disintegration of nucleoli in neurons. This condition may lower the ribosome content in neonatal neurons and impair protein synthesis.


Journal of Neural Transmission-supplement | 1999

Gene expression in fetal Down syndrome brain as revealed by subtractive hybridization.

Olga Labudova; Erwin Kitzmueller; Hermann Rink; N. Cairns; Gert Lubec

Information on gene expression in brain of patients with Down Syndrome (DS, trisomy 21) is limited and molecular biological research is focussing on mapping and sequencing chromosome 21. The information on gene expression in DS available follows the current concept of a gene dosage effect due to a third copy of chromosome 21 claiming overexpression of genes encoded on this chromosome. Based upon the availability of fetal brain and recent technology of gene hunting, we decided to use subtractive hybridization to evaluate differences in gene expression between DS and control brains. Subtractive hybridization was applied on two fetal brains with DS and two age and sex matched controls, 23rd week of gestation, and mRNA steady state levels were evaluated generating a subtractive library. Subtracted sequences were identified by gene bank and assigned by alignments to individual genes. We found a series of up- and downregulated sequences consisting of chromosomal transcripts, enzymes of intermediary metabolism, hormones, transporters/channels and transcription factors (TFs). We show that trisomy 21 or aneuploidy leads to the deterioration of gene expression and the derangement of transcripts described describes the involvement of chromosomes other than chromosome 21, explains impairment of transport, carriers, channels, signaling, known metabolic and hormones imbalances. The dys-coordinated expression of transcription factors including homeobox genes, POU-domain TFs, helix-loop-helix-motifs, LIM domain containing TFs, leucine zippers, forkhead genes, maybe of pathophysiological significance for abnormal brain development and wiring found in patients with DS. This is the first description of the concomitant expression of a large series of sequences indicating disruption of the concerted action of genes in that disorder.


Neurochemical Research | 2004

Life-long effects of perinatal asphyxia on stress-induced proteins and dynamin 1 in rat brain.

Erwin Kitzmueller; Kurt Krapfenbauer; H. Hoeger; Rachel Weitzdoerfer; Gert Lubec; Barbara Lubec

In previous work, we have shown that perinatal asphyxia (PA) in the rat leads to life-long neurotransmitter deficits and impairment of cognitive functions and behavior. This observation made us examine protein expression in hippocampus of rats with PA at the end of the life span. We applied a well-documented and characterized animal model of PA. Pups, normoxic and asphyxiated for 20 min, were brought up until the age of 24 months and then were sacrificed. Hippocampal tissue was dissected from the brains, and proteins were run on two-dimensional gel electrophoresis with in-gel digestion and subsequent identification of proteins by MALDI-TOF followed by quantification of protein spots by specific software. In hippocampus of rats with PA, the stress proteins protein disulfide isomerase A3 precursor and stress-induced phosphoprotein-1 were significantly increased, whereas the microtubule-associated protein dynamin-1 was significantly reduced. Increased stress protein levels may represent long-term effects of PA or, alternatively, could reflect conditioning of the stress protein machinery known to occur as a neuroprotective principle following hypoxic-ischemic conditions. Decreased dynamin-1 levels may be considered as a long-term effect on the exocytotic system possibly reflecting or leading to impaired neuronal transport and vesicle-trafficking in PA of the rat of advanced age.


Life Sciences | 1999

Genes involved in the pathophysiology of perinatal asphyxia

Olga Labudova; Elisabeth Schuller; Kristina Yeghiazarjan; Erwin Kitzmueller; H. Hoeger; Gert Lubec; Barbara Lubec

Mechanisms in the pathogenesis of perinatal asphyxia (PA) at the gene level are only beginning to be elucidated, although gene hunting using differential display has revealed differences in gene expression between hypoxic and normoxic cells in vitro. As no information on gene expression was available from in vivo studies, we decided to use a non-invasive and clinically relevant animal model of PA for mRNA hunting applying the subtractive hybridization method. mRNAs from normoxic rat brain and brain of rat pups with 20 min of asphyxia were isolated and compared by this technique. The resulting subtracted mRNAs were converted to cDNA, sequenced and identified by gene bank data. A series of transcripts representing transcription factors, transporters, metabolic factors, were found to be up- or downregulated providing insight into mechanisms of PA, and on the other hand, genes with unknown functions could be given a preliminary role i.e. in PA. Results obtained with this powerful tool are now challenging quantitative determination of these genes and gene products at the protein and activity level to confirm their role in PA.


Pediatric Research | 2003

Deficient Brain RNA Polymerase and Altered Nucleolar Structure Persists until Day 8 after Perinatal Asphyxia of the Rat

Philomena Kastner; Wilhelm Mosgoeller; Susanne Fang-Kircher; Erwin Kitzmueller; Liselotte Kirchner; Harald Hoeger; Peter Seither; Gert Lubec; Barbara Lubec

RNA polymerases (POL) are integral constituents of the protein synthesis machinery, with POL I and POL III coding for ribosomal RNA and POL II coding for protein. POL I is located in the nucleolus and transcribes class I genes, those that code for large ribosomal RNA. It has been reported that the POL system is seriously affected in perinatal asphyxia (PA) immediately after birth. Because POL I is necessary for protein synthesis and brain protein synthesis was shown to be deranged after hypoxic-ischemic conditions, we aimed to study whether POL derangement persists in a simple, well-documented animal model of graded global PA at the activity, mRNA, protein, and morphologic level until 8 d after the asphyctic insult. Nuclear POL I activity was determined according to a radiochemical method; mRNA steady state and protein levels of RPA4O—an essential subunit of POL I and III-were evaluated by blotting methods; and the POL I subunit polymerase activating factor-53 was evaluated using immunohistochemistry. Silver staining and transmission electron microscopy were used to examine the nucleolus. At the eighth day after PA, nuclear POL I decreased with the length of the asphyctic period, whereas mRNA and protein levels for RPA4O were unchanged. The subunit polymerase activating factor-53, however, was unambiguously reduced in several brain regions. Dramatic changes of nucleolar morphology were observed, the main finding being nucleolar disintegration at the electron microscopy level. We suggest that severe acidosis and/or deficient protein kinase C in the brain during the asphyctic period may be responsible for disintegration of the nucleolus as well as for decreased POL activity persisting until the eighth day after PA. The biologic effect may be that PA causes impaired RNA and protein synthesis, which has been already observed in hypoxic-ischemic states.


Journal of Neural Transmission-supplement | 1999

Altered gene expression in fetal Down syndrome brain as revealed by the gene hunting technique of subtractive hybridization.

Erwin Kitzmueller; Olga Labudova; Hermann Rink; N. Cairns; Gert Lubec

Information on gene expression in brain of patients with Down Syndrome (DS, trisomy 21) is limited and molecular biological research is focussing on mapping and sequencing chromosome 21. The information on gene expression in DS available follows the current concept of a gene dosage effect due to a third copy of chromosome 21 claiming overexpression of genes encoded on this chromosome. Based upon the availability of fetal brain and recent technology of gene hunting, we decided to use subtractive hybridization to evaluate differences in gene expression between DS and control brains. Subtractive hybridization was applied on two fetal brains with DS and two age and sex matched controls, 23rd week of gestation, and mRNA steady state levels were evaluated generating a subtractive library. Subtracted sequences were identified by gene bank and assigned by alignments to individual genes. We found a series of up- and downregulated sequences consisting of chromosomal transcripts, enzymes of intermediary metabolism, hormones, transporters/channels and transcription factors (TFs). We show that trisomy 21 or aneuploidy leads to the deterioration of gene expression and the derangement of transcripts describes the impairment of transport, carriers, channels, signaling, known metabolic and hormone imbalances. The dys-coordinated expression of transcription factors including homeobox genes, POU-domain TFs, helix-loop-helix-motifs, LIM domain containing TFs, leucine zippers, forkhead genes, maybe of pathophysiological significance for abnormal brain development and wiring found in patients with DS. This is the first description of the concomitant expression of a large series of sequences indicating disruption of the concerted action of genes in this disorder.

Collaboration


Dive into the Erwin Kitzmueller's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Harald Hoeger

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Seither

German Cancer Research Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge