Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Erwin Mayer is active.

Publication


Featured researches published by Erwin Mayer.


Science | 2006

The Preparation and Structures of Hydrogen Ordered Phases of Ice

Christoph G. Salzmann; Paolo G. Radaelli; Andreas Hallbrucker; Erwin Mayer; John L. Finney

Two hydrogen ordered phases of ice were prepared by cooling the hydrogen disordered ices V and XII under pressure. Previous attempts to unlock the geometrical frustration in hydrogen-bonded structures have focused on doping with potassium hydroxide and have had success in partially increasing the hydrogen ordering in hexagonal ice I (ice Ih). By doping ices V and XII with hydrochloric acid, we have prepared ice XIII and ice XIV, and we analyzed their structures by powder neutron diffraction. The use of hydrogen chloride to release geometrical frustration opens up the possibility of completing the phase diagram of ice.


Journal of Applied Physics | 1985

New method for vitrifying water and other liquids by rapid cooling of their aerosols

Erwin Mayer

A method for the vitrification of pure liquid water and dilute aqueous solutions is described which is the only one without a liquid cryomedium for heat transfer: rapid cooling of aqueous aerosol droplets on a solid cryoplate. This method is not limited to water and aqueous solutions, but can be used for the vitrification of any liquid aerosol, the only impurity being some codeposited vapor. The method can be applied in diverse fields such as cryobiology, cryomicroscopy, and low‐temperature spectroscopy of water and dilute aqueous solutions to avoid the formation of crystalline ice.


Physical Review Letters | 2009

Ice XV: a new thermodynamically stable phase of ice.

Christoph G. Salzmann; Paolo G. Radaelli; Erwin Mayer; John L. Finney

A new phase of ice, named ice XV, has been identified and its structure determined by neutron diffraction. Ice XV is the hydrogen-ordered counterpart of ice VI and is thermodynamically stable at temperatures below approximately 130 K in the 0.8 to 1.5 GPa pressure range. The regions of stability in the medium pressure range of the phase diagram have thus been finally mapped, with only hydrogen-ordered phases stable at 0 K. The ordered ice XV structure is antiferroelectric (P1), in clear disagreement with recent theoretical calculations predicting ferroelectric ordering (Cc).


Physical Chemistry Chemical Physics | 2001

A second distinct structural “state” of high-density amorphous ice at 77 K and 1 bar

Thomas Loerting; Christoph G. Salzmann; Ingrid Kohl; Erwin Mayer; Andreas Hallbrucker

High-density amorphous ice (HDA), further densified on isobaric heating from 77 K to 165 (177) K at 1.1 (1.9) GPa, relaxes at 77 K and 1 bar to the same structural “state” with a density of 1.25 ± 0.01 g cm−3. Its density is higher by ≈9% than that of HDA, and thus it is called very-high-density amorphous ice (VHDA). X-ray diffractogram and Raman spectrum of VHDA clearly differs from that of HDA, and the hydrogen-bonded O–O distance increases from 2.82 A in HDA to 2.85 A in VHDA. Implications for the polyamorphism of the amorphous forms of water are discussed.


Science | 1996

Two Calorimetrically Distinct States of Liquid Water Below 150 Kelvin

G. P. Johari; Andreas Hallbrucker; Erwin Mayer

Vapor-deposited amorphous solid and hyperquenched glassy water were found to irreversibly transform, on compression at 77 kelvin, to a high-density amorphous solid. On heating at atmospheric pressure, this solid became viscous water (water B), with a reversible glass-liquid transition onset at 129 ± 2 kelvin. A different form of viscous water (water A) was formed by heating the uncompressed vapor-deposited amorphous solid and hyperquenched liquid water. On thermal cycling up to 148 kelvin, water B remained kinetically and thermodynamically distinct from water A. The occurrence of these two states, which do not interconvert, helps explain both the configurational relaxation of water and stress-induced amorphization.


Biophysical Journal | 1994

Calorimetric studies of the kinetic unfreezing of molecular motions in hydrated lysozyme, hemoglobin, and myoglobin.

G. Sartor; Erwin Mayer; G. P. Johari

Differential scanning calorimetric (DSC) studies of the glassy states of as-received and hydrated lysozyme, hemoglobin, and myoglobin powders, with water contents of < or = 0.25, < or = 0.30, and < or = 0.29 g/g of protein, show that their heat capacity slowly increases with increasing temperature, without showing an abrupt increase characteristic of glass-->liquid transition. Annealing (also referred to as physical aging) of the hydrated proteins causes their DSC scans to show an endothermic region, similar to an overshoot, immediately above the annealing temperature. This annealing effect appears at all temperatures between approximately 150 and 300 K. The area under these peaks increases with increasing annealing time at a fixed temperature. The effects are attributed to the presence of a large number of local structures in which macromolecular segments diffuse at different time scales over a broad range. The lowest time scale corresponds to the > N-H and -O-H group motions which become kinetically unfrozen at approximately 150-170 K on heating at a rate of 30 K min-1 and which have a relaxation time of 5-10 s in this temperature range. The annealing effects confirm that the individual glass transition of the relaxing local regions is spread over a temperature range up to the denaturation temperature region of the proteins. The interpretation is supported by simulation of DSC scans in which the distribution of relaxation times is assumed to be exceptionally broad and in which annealing done at several temperatures over a wide range produces endothermic effects (or regions of DSC scans) qualitatively similar to those observed for the hydrated proteins.


Journal of Chemical Physics | 2008

Water polyamorphism: Reversibility and (dis)continuity

Katrin Winkel; Michael S. Elsaesser; Erwin Mayer; Thomas Loerting

An understanding of waters anomalies is closely linked to an understanding of the phase diagram of waters metastable noncrystalline states. Despite the considerable effort, such an understanding has remained elusive and many puzzles regarding phase transitions in supercooled liquid water and their possible amorphous proxies at low temperatures remain. Here, decompression of very high density amorphous ice (VHDA) from 1.1 to 0.02 GPa at 140 K is studied by means of dilatometry and powder x-ray diffraction of quench-recovered states. It is shown that the three amorphous states of ice are reversibly connected to each other, i.e., LDA<-->e-HDA<-->VHDA. However, while the downstroke VHDA-->e-HDA transition takes place in the pressure range of 0.06 GPaLDA transition takes place quasi-discontinuously at p approximately 0.06 GPa. That is, two amorphous-amorphous transitions of a distinct nature are observed for the first time in a one-component system-a first-order-like transition (e-HDA-->LDA) and a transition which is not first-order like but possibly of higher order (VHDA-->e-HDA). VHDA and e-HDA are established as the most stable and limiting states in the course of the transition. We interpret this as evidence disfavoring the hypothesis of multiple first-order liquid-liquid transitions (and the option of a third critical point), but favoring a single first-order liquid-liquid transition (and the option of a second critical point).


Philosophical Magazine Part B | 1989

The heat capacity and glass transition of hyperquenched glassy water

Andreas Hallbrucker; Erwin Mayer; G. P. Johari

Abstract The glass transition and heat capacity of hyperquenched glassy water have been studied by differential scanning calorimetry and by isothermal measurements from 103 K to a temperature where its crystallization to cubic ice is complete. Glassy water shows a thermally reversible glass-liquid transition and has a Tg, of 136 ± 1 K. The activation energy of structural relaxation in the transition range is ∼55kjmol−1 and is a reflection of the energy required to break two hydrogen bonds before a rotational-translational diffusion of a water molecule in the H-bonded network can occur. The temperature width of the transition is ∼12°, and the increase in the heat capacity is 1.6±0.1JK−1 mol−1. Liquid water formed on heating the glassy water to 146 K is more stable against crystallization than that which exists near 232 K. The hyperquenched glassy form of water can be thermodynamically continuous with liquid water, but whether or not it has the same structure as water above 273 K or supercooled water near t...


Journal of Chemical Physics | 2006

The local and intermediate range structures of the five amorphous ices at 80 K and ambient pressure: A Faber-Ziman and Bhatia-Thornton analysis

Daniel T. Bowron; John L. Finney; Andreas Hallbrucker; Ingrid Kohl; Thomas Loerting; Erwin Mayer; A. K. Soper

Using isotope substitution neutron scattering data, we present a detailed structural analysis of the short and intermediate range structures of the five known forms of amorphous ice. Two of the lower density forms--amorphous solid water and hyperquenched glassy water--have a structure very similar to each other and to low density amorphous ice, a structure which closely resembles a disordered, tetrahedrally coordinated, fully hydrogen bonded network. High density and very high density amorphous ices retain this tetrahedral organization at short range, but show significant differences beyond about 3.1 A from a typical water oxygen. The first diffraction peak in all structures is seen to be solely a function of the intermolecular organization. The short range connectivity in the two higher density forms is more homogeneous, while the hydrogen site disorder in these forms is greater. The low Q behavior of the structure factors indicates no significant density or concentration fluctuations over the length scale probed. We conclude that these three latter forms of ice are structurally distinct. Finally, the x-ray structure factors for all five amorphous systems are calculated for comparison with other studies.


Journal of Physical Chemistry B | 2011

Equilibrated High-Density Amorphous Ice and Its First-Order Transition to the Low-Density Form

Katrin Winkel; Erwin Mayer; Thomas Loerting

We investigate the downstroke transition from high- (HDA) to low-density amorphous ice (LDA) at 140 (H(2)O) and 143 K (D(2)O). The visual observation of sudden phase separation at 0.07 GPa is evidence of the first-order character of the transition. Powder X-ray diffractograms recorded on chips recovered from the propagating front show a double halo peak indicative of the simultaneous presence of LDA and HDA. By contrast, chips picked from different parts of the sample cylinder show either HDA or LDA. Growth of the low-density form takes place randomly somewhere inside of the high-density matrix. The thermal stability of HDA against transformation to LDA at ambient pressure significantly increases with decreasing recovery pressure and reaches its maximum at 0.07 GPa. A sample decompressed to 0.07 GPa is by ~17 K more stable than an unannealed HDA sample. An increasingly relaxed nature of the sample is also evident from the progressive disappearance of the broad calorimetric relaxation exotherm, preceding the sharp transition to LDA. Finally, we show that two independent thermodynamic paths lead to a very similar state of (relaxed) HDA at 140 K and 0.2 GPa. We argue that these observations imply an equilibrated nature of the amorphous sample in the pressure range of p ≲ 0.2 GPa and speculate that the observation of macroscopic phase separation involves two ultraviscous liquid phases at 140 K. This supports the scenario of a first-order liquid-liquid transition in bulk water.

Collaboration


Dive into the Erwin Mayer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ingrid Kohl

University of Innsbruck

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge