Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Erwin Swennen is active.

Publication


Featured researches published by Erwin Swennen.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Vaccine composition formulated with a novel TLR7-dependent adjuvant induces high and broad protection against Staphylococcus aureus.

Fabio Bagnoli; Maria Rita Fontana; Elisabetta Soldaini; Ravi Mishra; Luigi Fiaschi; Elena Cartocci; Vincenzo Nardi-Dei; Paolo Ruggiero; Sarah Nosari; Maria Grazia De Falco; Giuseppe Lofano; Sara Marchi; Bruno Galletti; Paolo Mariotti; Antonina Torre; Silvia Maccari; Maria Scarselli; C. Daniela Rinaudo; Naoko Inoshima; Silvana Savino; Elena Mori; Silvia Rossi-Paccani; Barbara Baudner; Michele Pallaoro; Erwin Swennen; Roberto Petracca; Cecilia Brettoni; Sabrina Liberatori; Nathalie Norais; Elisabetta Monaci

Significance Staphylococcus aureus is a human pathogen causing life-threatening infections. The high incidence of methicillin-resistant S. aureus isolates resistant to all antibiotics makes the development of anti-S. aureus vaccines an urgent medical need. However, the unique ability of S. aureus to produce virulent factors, which counteract virtually all pathways of innate and adaptive immunity, has hampered all vaccine discovery efforts. Starting from the assumption that to be effective a vaccine should induce highly functional antibodies and potentiate the killing capacity of phagocytic cells, we selected a cocktail of five conserved antigens involved in different mechanisms of pathogenesis, and we formulated them with a potent adjuvant. This vaccine provides an unprecedented protective efficacy against S. aureus infection in animal models. Both active and passive immunization strategies against Staphylococcus aureus have thus far failed to show efficacy in humans. With the attempt to develop an effective S. aureus vaccine, we selected five conserved antigens known to have different roles in S. aureus pathogenesis. They include the secreted factors α-hemolysin (Hla), ess extracellular A (EsxA), and ess extracellular B (EsxB) and the two surface proteins ferric hydroxamate uptake D2 and conserved staphylococcal antigen 1A. The combined vaccine antigens formulated with aluminum hydroxide induced antibodies with opsonophagocytic and functional activities and provided consistent protection in four mouse models when challenged with a panel of epidemiologically relevant S. aureus strains. The importance of antibodies in protection was demonstrated by passive transfer experiments. Furthermore, when formulated with a toll-like receptor 7-dependent (TLR7) agonist recently designed and developed in our laboratories (SMIP.7–10) adsorbed to alum, the five antigens provided close to 100% protection against four different staphylococcal strains. The new formulation induced not only high antibody titers but also a Th1 skewed immune response as judged by antibody isotype and cytokine profiles. In addition, low frequencies of IL-17–secreting T cells were also observed. Altogether, our data demonstrate that the rational selection of mixtures of conserved antigens combined with Th1/Th17 adjuvants can lead to promising vaccine formulations against S. aureus.


Molecular & Cellular Proteomics | 2012

Multi High-Throughput Approach for Highly Selective Identification of Vaccine Candidates: the Group A Streptococcus Case

Giuliano Bensi; Marirosa Mora; Giovanna Tuscano; Massimiliano Biagini; Emiliano Chiarot; Mauro Bombaci; Sabrina Capo; Fabiana Falugi; Andrea G. O. Manetti; Paolo Donato; Erwin Swennen; Marilena Gallotta; Manuela Garibaldi; Vittoria Pinto; Nico Chiappini; James M. Musser; Robert Janulczyk; Massimo Mariani; Maria Scarselli; John L. Telford; Renata Grifantini; Nathalie Norais; Immaculada Margarit; Guido Grandi

We propose an experimental strategy for highly accurate selection of candidates for bacterial vaccines without using in vitro and/or in vivo protection assays. Starting from the observation that efficacious vaccines are constituted by conserved, surface-associated and/or secreted components, the strategy contemplates the parallel application of three high throughput technologies, i.e. mass spectrometry-based proteomics, protein array, and flow-cytometry analysis, to identify this category of proteins, and is based on the assumption that the antigens identified by all three technologies are the protective ones. When we tested this strategy for Group A Streptococcus, we selected a total of 40 proteins, of which only six identified by all three approaches. When the 40 proteins were tested in a mouse model, only six were found to be protective and five of these belonged to the group of antigens in common to the three technologies. Finally, a combination of three protective antigens conferred broad protection against a panel of four different Group A Streptococcus strains. This approach may find general application as an accelerated and highly accurate path to bacterial vaccine discovery.


Journal of Biological Chemistry | 2006

Solution structure of the immunodominant domain of protective antigen GNA1870 of Neisseria meningitidis.

Francesca Cantini; Silvana Savino; Maria Scarselli; Vega Masignani; Mariagrazia Pizza; Giacomo Romagnoli; Erwin Swennen; Daniele Veggi; Lucia Banci; Rino Rappuoli

GNA1870, a 28-kDa surface-exposed lipoprotein of Neisseria meningitidis recently discovered by reverse vaccinology, is one of the most potent antigens of Meningococcus and a promising candidate for a universal vaccine against a devastating disease. Previous studies of epitope mapping and genetic characterization identified residues critical for bactericidal response within the C-terminal domain of the molecule. To elucidate the conformation of protective epitopes, we used NMR spectroscopy to obtain the solution structure of the immunodominant 18-kDa C-terminal portion of GNA1870. The structure consists of an eight-stranded antiparallel β-barrel overlaid by a short α-helix with an unstructured N-terminal end. Residues previously shown to be important for antibody recognition were mapped on loops facing the same ridge of the molecule. The sequence similarity of GNA1870 with members of the bacterial transferrin receptor family allows one to predict the folding of this class of well known bacterial antigens, providing the basis for the rational engineering of high affinity B cell epitopes.


ACS Chemical Biology | 2012

Phosphorylation of the Synthetic Hexasaccharide Repeating Unit Is Essential for the Induction of Antibodies to Clostridium difficile PSII Cell Wall Polysaccharide

Roberto Adamo; Maria Rosaria Romano; Francesco Berti; Rosanna Leuzzi; Marta Tontini; Elisa Danieli; Emilia Cappelletti; Osman S. Cakici; Erwin Swennen; Vittoria Pinto; Barbara Brogioni; Daniela Proietti; Cesira Galeotti; Luigi Lay; Mario A. Monteiro; Maria Scarselli; Paolo Costantino

Clostridium difficile is emerging worldwide as a major cause of nosocomial infections. The negatively charged PSII polysaccharide has been found in different strains of C. difficile and, thereby, represents an important target molecule for a possible carbohydrate-based vaccine. In order to identify a synthetic fragment that after conjugation to a protein carrier could be able to induce anti-PSII antibodies, we exploited a combination of chemical synthesis with immunochemistry, confocal immunofluorescence microscopy, and solid state NMR. We demonstrate that the phosphate group is crucial in synthetic glycans to mimic the native PSII polysaccharide; both native PSII and a phosphorylated synthetic hexasaccharide repeating unit conjugated to CRM(197) elicit comparable immunogenic responses in mice. This finding can aid design and selection of carbohydrate antigens to be explored as vaccine candidates.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Development of a glycoconjugate vaccine to prevent meningitis in Africa caused by meningococcal serogroup X

Francesca Micoli; Maria Rosaria Romano; Marta Tontini; Emilia Cappelletti; Massimiliano Gavini; Daniela Proietti; Simona Rondini; Erwin Swennen; Laura Santini; Sara Filippini; Cristiana Balocchi; Roberto Adamo; Gerd Pluschke; Gunnstein Norheim; Andrew J. Pollard; Allan Saul; Rino Rappuoli; Calman A. MacLennan; Francesco Berti; Paolo Costantino

Significance Meningococcal serogroup X has recently emerged as a cause of meningitis outbreaks with epidemic potential in sub-Saharan Africa. Novel conjugation technologies, compatible with a reproducible production process, have been successfully used to develop immunogenic polysaccharide conjugate vaccine candidates that are likely to protect against meningococcal X disease. The timely development of an anti-meningococcal X conjugate vaccine appears a logical next step in the broadest control of meningococcal disease and requires commitment now. Neisseria meningitidis is a major cause of bacterial meningitis worldwide, especially in the African meningitis belt, and has a high associated mortality. The meningococcal serogroups A, W, and X have been responsible for epidemics and almost all cases of meningococcal meningitis in the meningitis belt over the past 12 y. Currently no vaccine is available against meningococcal X (MenX). Because the development of a new vaccine through to licensure takes many years, this leaves Africa vulnerable to new epidemics of MenX meningitis at a time when the epidemiology of meningococcal meningitis on the continent is changing rapidly, following the recent introduction of a glycoconjugate vaccine against serogroup A. Here, we report the development of candidate glycoconjugate vaccines against MenX and preclinical data from their use in animal studies. Following optimization of growth conditions of our seed MenX strain for polysaccharide (PS) production, a scalable purification process was developed yielding high amounts of pure MenX PS. Different glycoconjugates were synthesized by coupling MenX oligosaccharides of varying chain length to CRM197 as carrier protein. Analytical methods were developed for in-process control and determination of purity and consistency of the vaccines. All conjugates induced high anti-MenX PS IgG titers in mice. Antibodies were strongly bactericidal against African MenX isolates. These findings support the further development of glycoconjugate vaccines against MenX and their assessment in clinical trials to produce a vaccine against the one cause of epidemic meningococcal meningitis that currently cannot be prevented by available vaccines.


Vaccine | 2010

Evaluation of a Group A Streptococcus synthetic oligosaccharide as vaccine candidate

A. Kabanova; Immaculada Margarit; Francesco Berti; Maria Rosaria Romano; Guido Grandi; Giuliano Bensi; Emiliano Chiarot; Daniela Proietti; Erwin Swennen; E. Cappelletti; P. Fontani; Daniele Casini; R. Adamo; Vittoria Pinto; David Skibinski; Sabrina Capo; G. Buffi; Marilena Gallotta; William J. Christ; A. S. Campbell; J. Pena; Peter H. Seeberger; Rino Rappuoli; Paolo Costantino

Bacterial infections caused by Group A Streptococcus (GAS) are a serious health care concern that currently cannot be prevented by vaccination. The GAS cell-wall polysaccharide (GAS-PS) is an attractive vaccine candidate due to its constant expression pattern on different bacterial strains and protective properties of anti-GAS-PS antibodies. Here we report for the first time the immunoprotective efficacy of glycoconjugates with synthetic GAS oligosaccharides as compared to those containing the native GAS-PS. A series of hexa- and dodecasaccharides based on the GAS-PS structure were prepared by chemical synthesis and conjugated to CRM(197). When tested in mice, the conjugates containing the synthetic oligosaccharides conferred levels of immunoprotection comparable to those elicited by the native conjugate. Antisera from immunized rabbits promoted phagocytosis of encapsulated GAS strains. Furthermore we discuss variables that might correlate with glycoconjugate immunogenicity and demonstrate the potential of the synthetic approach that benefits from increased antigen purity and facilitated manufacturing.


Infection and Immunity | 2013

Protective Efficacy Induced by Recombinant Clostridium difficile Toxin Fragments

Rosanna Leuzzi; Janice Spencer; Anthony M. Buckley; Cecilia Brettoni; Manuele Martinelli; Lorenza Tulli; Sara Marchi; Enrico Luzzi; June J. Irvine; Denise Candlish; Daniele Veggi; Werner Pansegrau; Luigi Fiaschi; Silvana Savino; Erwin Swennen; Osman S. Cakici; Ernesto Oviedo-Orta; Monica Giraldi; Barbara Baudner; Nunzia D'Urzo; Domenico Maione; Marco Soriani; Rino Rappuoli; Mariagrazia Pizza; Gillian Douce; Maria Scarselli

ABSTRACT Clostridium difficile is a spore-forming bacterium that can reside in animals and humans. C. difficile infection causes a variety of clinical symptoms, ranging from diarrhea to fulminant colitis. Disease is mediated by TcdA and TcdB, two large enterotoxins released by C. difficile during colonization of the gut. In this study, we evaluated the ability of recombinant toxin fragments to induce neutralizing antibodies in mice. The protective efficacies of the most promising candidates were then evaluated in a hamster model of disease. While limited protection was observed with some combinations, coadministration of a cell binding domain fragment of TcdA (TcdA-B1) and the glucosyltransferase moiety of TcdB (TcdB-GT) induced systemic IgGs which neutralized both toxins and protected vaccinated animals from death following challenge with two strains of C. difficile. Further characterization revealed that despite high concentrations of toxin in the gut lumens of vaccinated animals during the acute phase of the disease, pathological damage was minimized. Assessment of gut contents revealed the presence of TcdA and TcdB antibodies, suggesting that systemic vaccination with this pair of recombinant polypeptides can limit the disease caused by toxin production during C. difficile infection.


Microbial Cell Factories | 2012

The new pLAI (lux regulon based auto-inducible) expression system for recombinant protein production in Escherichia coli

Salvatore Nocadello; Erwin Swennen

BackgroundAfter many years of intensive research, it is generally assumed that no universal expression system can exist for high-level production of a given recombinant protein. Among the different expression systems, the inducible systems are the most popular for their tight regulation. However, induction is in many cases less favorable due to the high cost and/or toxicity of inducers, incompatibilities with industrial scale-up or detrimental growth conditions. Expression systems using autoinduction (or self-induction) prove to be extremely versatile allowing growth and induction of recombinant proteins without the need to monitor cell density or add inducer. Unfortunately, almost all the actual auto inducible expression systems need endogenous or induced metabolic changes during the growth to trigger induction, both frequently linked to detrimental condition to cell growth. In this context, we use a simple modular approach for a cell density-based genetic regulation in order to assemble an autoinducible recombinant protein expression system in E. coli.ResultThe newly designed pLAI expression system places the expression of recombinant proteins in Escherichia coli under control of the regulatory genes of the lux regulon of Vibrio fischeris Quorum Sensing (QS) system.The pLAI system allows a tight regulation of the recombinant gene allowing a negligible basal expression and expression only at high cell density. Sequence optimization of regulative genes of QS of V. fischeri for expression in E. coli upgraded the system to high level expression. Moreover, partition of regulative genes between the plasmid and the host genome and introduction of a molecular safety lock permitted tighter control of gene expression.ConclusionCoupling gene expression to cell density using cell-to-cell communication provides a promising approach for recombinant protein production. The system allows the control of expression of the target recombinant gene independently from external inducers or drastic changes in metabolic conditions and enabling tight regulation of expression.


Archive | 2006

Fed batch culture methods for streptococci

Erwin Swennen


Archive | 2010

Luxr mutants from vibrio fischeri auto induction expression systems using them

Erwin Swennen; Salvatore Nocadello

Collaboration


Dive into the Erwin Swennen's collaboration.

Researchain Logo
Decentralizing Knowledge