Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Erwin Witters is active.

Publication


Featured researches published by Erwin Witters.


The Plant Cell | 2011

The Arabidopsis bHLH Transcription Factors MYC3 and MYC4 Are Targets of JAZ Repressors and Act Additively with MYC2 in the Activation of Jasmonate Responses

Patricia Fernández-Calvo; Andrea Chini; Gemma Fernández-Barbero; José-Manuel Chico; Selena Gimenez-Ibanez; Jan Geerinck; Dominique Eeckhout; Fabian Schweizer; Marta Godoy; José Manuel Franco-Zorrilla; Laurens Pauwels; Erwin Witters; María Isabel Puga; Javier Paz-Ares; Alain Goossens; Philippe Reymond; Geert De Jaeger; Roberto Solano

This work identifies two transcription factors, MYC3 and MYC4, as targets of JAZ repressors and regulators of responses to jasmonate. It finds a specificity of transcription factor activity that could be a clue to understanding the diversity of JA-regulated responses. Jasmonates (JAs) trigger an important transcriptional reprogramming of plant cells to modulate both basal development and stress responses. In spite of the importance of transcriptional regulation, only one transcription factor (TF), the Arabidopsis thaliana basic helix-loop-helix MYC2, has been described so far as a direct target of JAZ repressors. By means of yeast two-hybrid screening and tandem affinity purification strategies, we identified two previously unknown targets of JAZ repressors, the TFs MYC3 and MYC4, phylogenetically closely related to MYC2. We show that MYC3 and MYC4 interact in vitro and in vivo with JAZ repressors and also form homo- and heterodimers with MYC2 and among themselves. They both are nuclear proteins that bind DNA with sequence specificity similar to that of MYC2. Loss-of-function mutations in any of these two TFs impair full responsiveness to JA and enhance the JA insensitivity of myc2 mutants. Moreover, the triple mutant myc2 myc3 myc4 is as impaired as coi1-1 in the activation of several, but not all, JA-mediated responses such as the defense against bacterial pathogens and insect herbivory. Our results show that MYC3 and MYC4 are activators of JA-regulated programs that act additively with MYC2 to regulate specifically different subsets of the JA-dependent transcriptional response.


Plant Physiology | 2006

Gradual Soil Water Depletion Results in Reversible Changes of Gene Expression, Protein Profiles, Ecophysiology, and Growth Performance in Populus euphratica , a Poplar Growing in Arid Regions

Marie-Béatrice Bogeat-Triboulot; Mikael Brosché; Jenny Renaut; Laurent Jouve; Didier Le Thiec; Payam Fayyaz; Basia Vinocur; Erwin Witters; Kris Laukens; Thomas Teichmann; Arie Altman; Jean-François Hausman; Andrea Polle; Jaakko Kangasjärvi; Erwin Dreyer

The responses of Populus euphratica Oliv. plants to soil water deficit were assessed by analyzing gene expression, protein profiles, and several plant performance criteria to understand the acclimation of plants to soil water deficit. Young, vegetatively propagated plants originating from an arid, saline field site were submitted to a gradually increasing water deficit for 4 weeks in a greenhouse and were allowed to recover for 10 d after full reirrigation. Time-dependent changes and intensity of the perturbations induced in shoot and root growth, xylem anatomy, gas exchange, and water status were recorded. The expression profiles of approximately 6,340 genes and of proteins and metabolites (pigments, soluble carbohydrates, and oxidative compounds) were also recorded in mature leaves and in roots (gene expression only) at four stress levels and after recovery. Drought successively induced shoot growth cessation, stomatal closure, moderate increases in oxidative stress-related compounds, loss of CO2 assimilation, and root growth reduction. These effects were almost fully reversible, indicating that acclimation was dominant over injury. The physiological responses were paralleled by fully reversible transcriptional changes, including only 1.5% of the genes on the array. Protein profiles displayed greater changes than transcript levels. Among the identified proteins for which expressed sequence tags were present on the array, no correlation was found between transcript and protein abundance. Acclimation to water deficit involves the regulation of different networks of genes in roots and shoots. Such diverse requirements for protecting and maintaining the function of different plant organs may render plant engineering or breeding toward improved drought tolerance more complex than previously anticipated.


Molecular Systems Biology | 2010

Targeted interactomics reveals a complex core cell cycle machinery in Arabidopsis thaliana.

Jelle Van Leene; Jens Hollunder; Dominique Eeckhout; Geert Persiau; Eveline Van De Slijke; Hilde Stals; Gert Van Isterdael; Aurine Verkest; Sandy Neirynck; Yelle Buffel; Stefanie De Bodt; Steven Maere; Kris Laukens; Anne Pharazyn; Paulo Cavalcanti Gomes Ferreira; Nubia Barbosa Eloy; Charlotte Renne; Christian Meyer; Jean-Denis Faure; Jens Steinbrenner; Jim Beynon; John C. Larkin; Yves Van de Peer; Pierre Hilson; Martin Kuiper; Lieven De Veylder; Harry Van Onckelen; Dirk Inzé; Erwin Witters; Geert De Jaeger

Cell proliferation is the main driving force for plant growth. Although genome sequence analysis revealed a high number of cell cycle genes in plants, little is known about the molecular complexes steering cell division. In a targeted proteomics approach, we mapped the core complex machinery at the heart of the Arabidopsis thaliana cell cycle control. Besides a central regulatory network of core complexes, we distinguished a peripheral network that links the core machinery to up‐ and downstream pathways. Over 100 new candidate cell cycle proteins were predicted and an in‐depth biological interpretation demonstrated the hypothesis‐generating power of the interaction data. The data set provided a comprehensive view on heterodimeric cyclin‐dependent kinase (CDK)–cyclin complexes in plants. For the first time, inhibitory proteins of plant‐specific B‐type CDKs were discovered and the anaphase‐promoting complex was characterized and extended. Important conclusions were that mitotic A‐ and B‐type cyclins form complexes with the plant‐specific B‐type CDKs and not with CDKA;1, and that D‐type cyclins and S‐phase‐specific A‐type cyclins seem to be associated exclusively with CDKA;1. Furthermore, we could show that plants have evolved a combinatorial toolkit consisting of at least 92 different CDK–cyclin complex variants, which strongly underscores the functional diversification among the large family of cyclins and reflects the pivotal role of cell cycle regulation in the developmental plasticity of plants.


Molecular & Cellular Proteomics | 2007

A Tandem Affinity Purification-based Technology Platform to Study the Cell Cycle Interactome in Arabidopsis thaliana

Jelle Van Leene; Hilde Stals; Dominique Eeckhout; Geert Persiau; Eveline Van De Slijke; Gert Van Isterdael; Annelies De Clercq; Eric Bonnet; Kris Laukens; Noor Remmerie; Kim Henderickx; Thomas De Vijlder; Azmi Abdelkrim; Anne Pharazyn; Harry Van Onckelen; Dirk Inzé; Erwin Witters; Geert De Jaeger

Defining protein complexes is critical to virtually all aspects of cell biology because many cellular processes are regulated by stable protein complexes, and their identification often provides insights into their function. We describe the development and application of a high throughput tandem affinity purification/mass spectrometry platform for cell suspension cultures to analyze cell cycle-related protein complexes in Arabidopsis thaliana. Elucidation of this protein-protein interaction network is essential to fully understand the functional differences between the highly redundant cyclin-dependent kinase/cyclin modules, which are generally accepted to play a central role in cell cycle control, in all eukaryotes. Cell suspension cultures were chosen because they provide an unlimited supply of protein extracts of actively dividing and undifferentiated cells, which is crucial for a systematic study of the cell cycle interactome in the absence of plant development. Here we report the mapping of a protein interaction network around six known core cell cycle proteins by an integrated approach comprising generic Gateway-based vectors with high cloning flexibility, the fast generation of transgenic suspension cultures, tandem affinity purification adapted for plant cells, matrix-assisted laser desorption ionization tandem mass spectrometry, data analysis, and functional assays. We identified 28 new molecular associations and confirmed 14 previously described interactions. This systemic approach provides new insights into the basic cell cycle control mechanisms and is generally applicable to other pathways in plants.


Mass Spectrometry Reviews | 2008

PROTEOME ANALYSIS OF NON-MODEL PLANTS: A CHALLENGING BUT POWERFUL APPROACH

Sebastien Carpentier; Bart Panis; Annelies Vertommen; Ronny Swennen; Kjell Sergeant; Jenny Renaut; Kris Laukens; Erwin Witters; Bart Samyn; Bart Devreese

Biological research has focused in the past on model organisms and most of the functional genomics studies in the field of plant sciences are still performed on model species or species that are characterized to a great extent. However, numerous non-model plants are essential as food, feed, or energy resource. Some features and processes are unique to these plant species or families and cannot be approached via a model plant. The power of all proteomic and transcriptomic methods, that is, high-throughput identification of candidate gene products, tends to be lost in non-model species due to the lack of genomic information or due to the sequence divergence to a related model organism. Nevertheless, a proteomics approach has a great potential to study non-model species. This work reviews non-model plants from a proteomic angle and provides an outline of the problems encountered when initiating the proteome analysis of a non-model organism. The review tackles problems associated with (i) sample preparation, (ii) the analysis and interpretation of a complex data set, (iii) the protein identification via MS, and (iv) data management and integration. We will illustrate the power of 2DE for non-model plants in combination with multivariate data analysis and MS/MS identification and will evaluate possible alternatives.


FEBS Letters | 1998

Zeatin is indispensable for the G2‐M transition in tobacco BY‐2 cells

Françoise Laureys; Walter Dewitte; Erwin Witters; Marc Van Montagu; Dirk Inzé; Harry Van Onckelen

LC‐MS/MS quantification of endogenous cytokinins proved that lovastatin affects cytokinin biosynthesis by inhibiting HMG‐CoA reductase. Out of eight different aminopurines and a synthetic auxin tested for their ability to override lovastatin inhibition of mitosis, only zeatin was active. Our data point to a key role for a well‐defined cytokinin (here, zeatin) in the G2‐M transition of tobacco BY‐2 cells.


Trends in Plant Science | 2008

Boosting tandem affinity purification of plant protein complexes.

Jelle Van Leene; Erwin Witters; Dirk Inzé; Geert De Jaeger

Protein-interaction mapping based on the tandem affinity purification (TAP) approach has been successfully established for several systems, such as yeast and mammalian cells. However, relatively few protein complex purifications have been reported for plants. Here, we highlight solutions for the pitfalls and propose a major breakthrough in the quest for a better TAP tag in plants.


Cell | 2014

The TPLATE Adaptor Complex Drives Clathrin-Mediated Endocytosis in Plants

Astrid Gadeyne; Clara Sánchez-Rodríguez; Steffen Vanneste; Simone Di Rubbo; Henrik Zauber; Kevin Vanneste; Jelle Van Leene; Nancy De Winne; Dominique Eeckhout; Geert Persiau; Eveline Van De Slijke; Bernard Cannoot; Leen Vercruysse; Jonathan R. Mayers; Maciek Adamowski; Urszula Kania; Matthias Ehrlich; Alois Schweighofer; Tijs Ketelaar; Steven Maere; Sebastian Y. Bednarek; Jiří Friml; Kris Gevaert; Erwin Witters; Eugenia Russinova; Staffan Persson; Geert De Jaeger; Daniël Van Damme

Clathrin-mediated endocytosis is the major mechanism for eukaryotic plasma membrane-based proteome turn-over. In plants, clathrin-mediated endocytosis is essential for physiology and development, but the identification and organization of the machinery operating this process remains largely obscure. Here, we identified an eight-core-component protein complex, the TPLATE complex, essential for plant growth via its role as major adaptor module for clathrin-mediated endocytosis. This complex consists of evolutionarily unique proteins that associate closely with core endocytic elements. The TPLATE complex is recruited as dynamic foci at the plasma membrane preceding recruitment of adaptor protein complex 2, clathrin, and dynamin-related proteins. Reduced function of different complex components severely impaired internalization of assorted endocytic cargoes, demonstrating its pivotal role in clathrin-mediated endocytosis. Taken together, the TPLATE complex is an early endocytic module representing a unique evolutionary plant adaptation of the canonical eukaryotic pathway for clathrin-mediated endocytosis.


Tree Genetics & Genomes | 2008

Quantitative proteomic analysis of short photoperiod and low-temperature responses in bark tissues of peach (Prunus persica L. Batsch)

Jenny Renaut; Jean-Francois Hausman; Carole L. Bassett; Timothy S. Artlip; Henry-Michel Cauchie; Erwin Witters; Michael Wisniewski

In the temperate climate of the northern hemisphere, winter survival of woody plants is determined by the ability to acclimate to freezing temperatures and to undergo a period of dormancy. Cold acclimation in many woody plants is initially induced by short photoperiod and low, non-freezing temperatures. These two factors (5°C and short photoperiod) were used to study changes in the proteome of bark tissues of 1-year-old peach trees. Difference in-gel electrophoresis technology, a gel-based approach involving the labeling of proteins with different fluorescent dyes, was used to conduct a quantitative assessment of changes in the peach bark proteome during cold acclimation. Using this approach, we were able to identify differentially expressed proteins and to assign them to a class of either ‘temperature-responsive’ or ‘photoperiod-responsive’ proteins. The most significant factor affecting the proteome appeared to be low temperature, while the combination of low temperature and short photoperiod was shown to act either synergistically or additively on the expression of some proteins. Fifty-seven protein spots on gels were identified by mass spectrometry. They included proteins involved in carbohydrate metabolism (e.g., enolase, malate dehydrogenase, etc), defense or protective mechanisms (e.g., dehydrin, HSPs, and PR-proteins), energy production and electron transport (e.g., adenosine triphosphate synthases and lyases), and cytoskeleton organization (e.g., tubulins and actins). The information derived from the analysis of the proteome is discussed as a function of the two treatment factors: low temperature and short photoperiod.


The EMBO Journal | 2008

The DNA replication checkpoint aids survival of plants deficient in the novel replisome factor ETG1

Naoki Takahashi; Tim Lammens; Véronique Boudolf; Sara Maes; Takeshi Yoshizumi; Geert De Jaeger; Erwin Witters; Dirk Inzé; Lieven De Veylder

Complete and accurate chromosomal DNA replication is essential for the maintenance of the genetic integrity of all organisms. Errors in replication are buffered by the activation of DNA stress checkpoints; however, in plants, the relative importance of a coordinated induction of DNA repair and cell cycle‐arresting genes in the survival of replication mutants is unknown. In a systematic screen for Arabidopsis thaliana E2F target genes, the E2F TARGET GENE 1 (ETG1) was identified as a novel evolutionarily conserved replisome factor. ETG1 was associated with the minichromosome maintenance complex and was crucial for efficient DNA replication. Plants lacking the ETG1 gene had serrated leaves due to cell cycle inhibition triggered by the DNA replication checkpoints, as shown by the transcriptional induction of DNA stress checkpoint genes. The importance of checkpoint activation was highlighted by double mutant analysis: whereas etg1 mutant plants developed relatively normally, a synthetically lethal interaction was observed between etg1 and the checkpoint mutants wee1 and atr, demonstrating that activation of a G2 cell cycle checkpoint accounts for survival of ETG1‐deficient plants.

Collaboration


Dive into the Erwin Witters's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sebastien Carpentier

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bart Panis

Catholic University of Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rony Swennen

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge