Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Erzsébet Sándor is active.

Publication


Featured researches published by Erzsébet Sándor.


BMC Genomics | 2011

The CRE1 carbon catabolite repressor of the fungus Trichoderma reesei: A master regulator of carbon assimilation

Thomas Portnoy; Antoine Margeot; Rita Linke; Lea Atanasova; Erzsébet Fekete; Erzsébet Sándor; Lukas Hartl; Levente Karaffa; Irina S. Druzhinina; Bernhard Seiboth; Stéphane Le Crom; Christian P. Kubicek

BackgroundThe identification and characterization of the transcriptional regulatory networks governing the physiology and adaptation of microbial cells is a key step in understanding their behaviour. One such wide-domain regulatory circuit, essential to all cells, is carbon catabolite repression (CCR): it allows the cell to prefer some carbon sources, whose assimilation is of high nutritional value, over less profitable ones. In lower multicellular fungi, the C2H2 zinc finger CreA/CRE1 protein has been shown to act as the transcriptional repressor in this process. However, the complete list of its gene targets is not known.ResultsHere, we deciphered the CRE1 regulatory range in the model cellulose and hemicellulose-degrading fungus Trichoderma reesei (anamorph of Hypocrea jecorina) by profiling transcription in a wild-type and a delta-cre1 mutant strain on glucose at constant growth rates known to repress and de-repress CCR-affected genes. Analysis of genome-wide microarrays reveals 2.8% of transcripts whose expression was regulated in at least one of the four experimental conditions: 47.3% of which were repressed by CRE1, whereas 29.0% were actually induced by CRE1, and 17.2% only affected by the growth rate but CRE1 independent. Among CRE1 repressed transcripts, genes encoding unknown proteins and transport proteins were overrepresented. In addition, we found CRE1-repression of nitrogenous substances uptake, components of chromatin remodeling and the transcriptional mediator complex, as well as developmental processes.ConclusionsOur study provides the first global insight into the molecular physiological response of a multicellular fungus to carbon catabolite regulation and identifies several not yet known targets in a growth-controlled environment.


PLOS ONE | 2014

The VELVET A orthologue VEL1 of Trichoderma reesei regulates fungal development and is essential for cellulase gene expression.

Razieh Karimi Aghcheh; Zoltán Németh; Lea Atanasova; Erzsébet Fekete; Melinda Paholcsek; Erzsébet Sándor; Benigno Aquino; Irina S. Druzhinina; Levente Karaffa; Christian P. Kubicek

Trichoderma reesei is the industrial producer of cellulases and hemicellulases for biorefinery processes. Their expression is obligatorily dependent on the function of the protein methyltransferase LAE1. The Aspergillus nidulans orthologue of LAE1 - LaeA - is part of the VELVET protein complex consisting of LaeA, VeA and VelB that regulates secondary metabolism and sexual as well as asexual reproduction. Here we have therefore investigated the function of VEL1, the T. reesei orthologue of A. nidulans VeA. Deletion of the T. reesei vel1 locus causes a complete and light-independent loss of conidiation, and impairs formation of perithecia. Deletion of vel1 also alters hyphal morphology towards hyperbranching and formation of thicker filaments, and with consequently reduced growth rates. Growth on lactose as a sole carbon source, however, is even more strongly reduced and growth on cellulose as a sole carbon source eliminated. Consistent with these findings, deletion of vel1 completely impaired the expression of cellulases, xylanases and the cellulase regulator XYR1 on lactose as a cellulase inducing carbon source, but also in resting mycelia with sophorose as inducer. Our data show that in T. reesei VEL1 controls sexual and asexual development, and this effect is independent of light. VEL1 is also essential for cellulase gene expression, which is consistent with the assumption that their regulation by LAE1 occurs by the VELVET complex.


Microbiological Research | 2012

Genetic diversity of a Botrytis cinerea cryptic species complex in Hungary

Éva Fekete; Erzsébet Fekete; László Miklós Irinyi; Levente Karaffa; Mariann Árnyasi; Mojtaba Asadollahi; Erzsébet Sándor

Botrytis cinerea has been described as a species complex containing two cryptic species, referred to as groups I and II. The first B. cinerea group I strains outside of Western Europe were collected in Hungary in 2008 from strawberry and rape plants. Sympatric B. cinerea cryptic species were analyzed using a population genetic approach and phenotypic markers. Statistically significant, but moderate population differentiation was found between the two groups in Hungary. Group I was originally typified by the lack of the transposable elements Boty and Flipper. However, all the Hungarian group I isolates carried the Boty element and one isolate additionally contained Flipper, indicating a much wider genetic variation than previously believed. Vegetative compatibility analyses showed that twelve of the thirteen B. cinerea group I isolates studied belonged to a unique vegetative compatibility group (VCG), but VCGs overlapped between groups. Phenotypic markers such as fenhexamid resistance or asexual spore size were found unsuitable to differentiate between the cryptic species. The results did not confirm the complete separation of the two cryptic species, previously determined with genealogical concordance of the phylogenetic species recognition using multiple gene sequences, and suggest instead the possibility of information exchange between them.


Phytopathology | 2008

Sexual Recombination in the Botrytis cinerea Populations in Hungarian Vineyards

Kálmán Zoltán Váczy; Erzsébet Sándor; Levente Karaffa; Erzsébet Fekete; Éva Fekete; Mariann Árnyasi; Levente Czeglédi; György Kövics; Irina S. Druzhinina; Christian P. Kubicek

Botrytis cinerea (anamorph of Botryotinia fuckeliana) causes gray mold on a high number of crop plants including grapes. In this study, we investigated the genetic properties of a grape pathogenic population of B. cinerea in the area of Eger, Hungary. A total of 109 isolates from 12 areas were sampled. Based on the sequence of the beta-tubulin (tub1) locus, they all belong to group II, a phylogenetic species within B. cinerea. Seventy-four isolates were classified as transposa, with both the Flipper and Boty transposons, and 10 were classified as vacuma, lacking both transposons. The remaining isolates contained either only Flipper (13) or Boty (12). Multilocus analysis of sequences from tub1 and two other loci (elongation factor 1-alpha, tef1, and a minisatellite from the intron of an ATPase, MSB1) led to poor phylogenetic resolution of strains in individual clades. Analysis of five microsatellites (Bc2, Bc3, Bc5, Bc6, and Bc10) resulted in 55 microsatellite haplotypes within the 109 strains. No correlation was detected among individual haplotypes and the presence/absence of Flipper and/or Boty, the geographic origin, or the year of isolation. Application of the index of association, the chi-square test, and the phi test consistently indicated that the population of Hungarian isolates of B. cinerea undergoes sexual reproduction. However, the index of association test suggested the presence of some clonality, and the fixation index showed a low or occasionally moderate level of fixation in the Flipper populations. We conclude that the B. cinerea populations in Hungary consist of a strongly recombining group II phylogenetic species.


Archives of Microbiology | 2002

Regulation of formation of the intracellular β-gaiactosidase activity ofAspergillus nidulans

Erzsébet Fekete; Levente Karaffa; Erzsébet Sándor; Bernhard Seiboth; Sándor Biró; Attila Szentirmai; Christian P. Kubicek

The regulation of formation of the single intracellular β-galactosidase activity ofAspergillus nidulans was investigated. β-Galactosidase was not formed during growth on glucose or glycerol, but was rapidly induced during growth on lactose orD-galactose.L-Arabinose, and — with lower efficacy —D-xylose also induced β-galactosidase activity. Addition of glucose to cultures growing on lactose led to a rapid decrease in β-galactosidase activity. In contrast, in cultures growing onD-galactose, addition of glucose decreased the activity of β-galactosidase only slightly. Glucose inhibited the uptake of lactose, but not ofD-galactose, and required the carbon catabolite repressor CreA for this. In addition, CreA also repressed the formation of basal levels of β-galactosidase and partially interfered with the induction of β-galactosidase byD-galactose,L-arabinose, andD-xylose.D-Galactose phosphorylation was not necessary for β-galactosidase induction, since induction byD-galactose occurred in anA. nidulans mutant defective in galactose kinase, and by the non-metabolizableD-galactose analogue fucose in the wild-type strain. Interestingly, a mutant in galactose-1-phosphate uridylyl transferase produced β-galactosidase at a low, constitutive level even on glucose and glycerol and was no longer inducible byD-galactose, whereas it was still inducible byL-arabinose. We conclude that biosynthesis of the intracellular β-galactosidase ofA. nidulans} is regulated by CreA, partially repressed by galactose-1-phosphate uridylyl transferase, and induced byD-galactose andL-arabinose in independent ways.


Applied Microbiology and Biotechnology | 1999

The role of the alternative respiratory pathway in the stimulation of cephalosporin C formation by soybean oil in Acremonium chrysogenum

Erzsébet Sándor; József Kozma; Christian P. Kubicek; Attila Szentirmai

Abstract Addition of soybean oil to Acremonium chrysogenum cultures growing on sugars doubled the specific production of cephalosporin C during the idiophase of growth. While the addition of soybean oil had no effect on the total rate of respiration, the respiration that proceeded via the alternative, cyanide-insensitive pathway exhibited a more than twofold increase. Addition of soybean oil also stimulated the formation of isocitrate lyase activities. Inhibition of oxidative metabolism of one of the products of isocitrate lyase (succinate) by thenoyltrifluoroacetone completely inhibited the alternative respiratory pathway. The role of soybean-oil-stimulated alternative respiration in the stimulation of cephalosporin C production and the role of isocitrate lyase are discussed.


Canadian Journal of Microbiology | 2001

Analysis of the relationship between growth, cephalosporin C production, and fragmentation in Acremonium chrysogenum

Erzsébet Sándor; Attila Szentirmai; Gopal C. Paul; Colin R. Thomas; István Pócsi; Levente Karaffa

Mycelial fragmentation in submerged cultures of the cephalosporin C (CPC) producing fungus Acremonium chrysogenum was characterized by image analysis. In both fed-batch and chemostat cultures, the proportion of mycelial clumps seemed to be the most sensitive morphological indicator of fragmentation. In a fed-batch fermentation culture, this declined from roughly 60% at inoculation to less than 10% after 43 h. Subsequent additions of glucose resulted in a sharp increase back to near the initial value, an increase that reversed itself a few hours after glucose exhaustion. Meanwhile CPC production continued to decline steadily. On the other hand, the addition of soybean oil enhanced CPC production, but had no significant effect on the morphology. Although it may sometimes appear that morphology and productivity are related in batch or fed-batch cultures, this study suggests that this is because both respond simultaneously to more fundamental physiological changes, dependent on the availability of carbon. In circumstances, such as supplementary carbon source addition, the relationship is lost. Chemostat cultures supported this belief, as CPC-production rates were hardly affected by the specific growth rate, but the morphology showed significant differences, i.e., lower dilution rates resulted in a lower proportion of clumps and in smaller clumps.


Free Radical Research | 2001

Cyanide-resistant alternative respiration is strictly correlated to intracellular peroxide levels in Acremonium chrysogenum

Levente Karaffa; Kálmán Zoltán Váczy; Erzsébet Sándor; Sándor Biró; Attila Szentirmai; István Pócsi

A strict correlation between the intensity of the cyanide-resistant alternative respiratory pathway and the intracellular peroxide levels in the cephalosporin C producer filamentous fungus Acremonium chrysogenum was demonstrated. Intracellular peroxide levels increased in a dose-dependent manner after addition of H2O2 to the culture media. A similar phenomenon was observed due to the specific inhibition of catalase by salicylic acid. In both cases, cyanide-resistant respiration was markedly stimulated. On the other hand, both cyanide-resistant respiration and intracellular peroxide levels were effectively suppressed by the lipid peroxyl radical scavenger DL-α-tocopherol, which breaks lipid peroxidation chains effectively. Our findings firmly supported the assumption that there is a connection between the intracellular peroxide levels and the intensity of the alternative respiratory pathway in fungi.


Fungal Biology | 2009

Taxonomical re-evaluation of Phoma-like soybean pathogenic fungi.

László Miklós Irinyi; György Kövics; Erzsébet Sándor

Coelomycetous fungi classified in Ascochyta, Phoma, and Phyllosticta have been recorded from spots on leaves and pods of soybeans. Based on the Genealogical Concordance Phylogenetic Species Concept, the authors suggest the re-evaluation of the taxonomic status of Phoma sojicola (syn.=Ascochyta sojicola) and Phyllosticta sojicola. In spite of the former delimitation of Phoma sojicola based on small differences in morphological features, it has proved to be identical to Phoma pinodella. Similarly, it was also confirmed that Phyllosticta sojicola was identical to Phoma exigua var. exigua. The authors supply tools for identification of Phoma-like fungi by combined conventional and molecular methods. Protein-encoding genes (tef1 and beta-tubulin) were successfully applied within the Phoma genus to infer phylogenetic relationships.


Process Biochemistry | 1997

Methionine enhances sugar consumption, fragmentation, vacuolation and cephalosporin-C production in Acremonium chrysogenum

Erzsébet Sándor; József Kozma; Attila Szentirmai

The effects of methionine on fragmentation and vacuolation in Acremonium chrysogenum was examined during growth on different carbon sources. Cells exhibited a filamentous form during exponential growth phase, which was followed by a yeast-like morphology in the stationary stage. Cultures also underwent a vacuolation process, monitored by the average cell diameter. The first phenomenon was correlated with growth, the latter seemed to be related to the sugar consumption rate. Methionine addition increased growth rate by accelerating sugar consumption, enhanced the vacuolation process, and increased the specific cephalosporin-C production rate.

Collaboration


Dive into the Erzsébet Sándor's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christian P. Kubicek

Vienna University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bernhard Seiboth

Vienna University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge