Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Esfandiar Pakdel is active.

Publication


Featured researches published by Esfandiar Pakdel.


Journal of Photochemistry and Photobiology B-biology | 2011

Photo induced silver on nano titanium dioxide as an enhanced antimicrobial agent for wool

Majid Montazer; Amir Behzadnia; Esfandiar Pakdel; Mohammad Karim Rahimi; Mohammad Bameni Moghadam

In this study an effective nanocomposite antimicrobial agent for wool fabric was introduced. The silver loaded nano TiO(2) as a nanocomposite was prepared through UV irradiation in an ultrasonic bath. The nanocomposite was stabilized on the wool fabric surface by using citric acid as a friendly cross-linking agent. The treated wool fabrics indicated an antimicrobial activity against both Staphylococcus aureus and Escherichia coli bacteria. Increasing the concentration of Ag/TiO(2) nanocomposite led to an improvement in antibacterial activities of the treated fabrics. Also increasing the amount of citric acid improved the adsorption of Ag/TiO(2) on the wool fabric surface leading to enhance antibacterial activity. The EDS spectrum, SEM images, and XRD patterns was studied to confirm the presence of existence of nanocomposite on the fabric surface. The role of both cross-linking agent and nanocomposite concentrations on the results was investigated using response surface methodology (RSM).


Photochemistry and Photobiology | 2010

Reducing Photoyellowing of Wool Using Nano TiO2

Majid Montazer; Esfandiar Pakdel

Wool is the most important animal fiber used in textile industries, but its photostability is very low. Scientists have searched for new ways to increase the photostability of wool. As TiO2 nano particles have features suitable for new applications, the UV‐blocking power of nano TiO2 may be used for protecting fabrics against UV rays. Treatment of wool with TiO2 can be effective for controlling photodegradation. This study focused on protecting wool fabric against UV rays using nano TiO2. To this end, oxidized and raw wool were treated with citric acid as the cross‐linking agent and different concentrations of nano TiO2. The whiteness and yellowness of wool fabric samples were reported. XRD patterns proved the existence of TiO2 nano‐particles on the wool surface. Finally, the results revealed that nano TiO2 is a suitable UV absorber on wool fabric and its effect depends on concentration.


Journal of Colloid and Interface Science | 2013

Self-cleaning cotton functionalized with TiO2/SiO2: focus on the role of silica.

Esfandiar Pakdel; Walid A. Daoud

This manuscript aims to investigate the functionalization of cotton fabrics with TiO2/SiO2. In this study, the sol-gel method was employed to prepare titania and silica sols and the functionalization was carried out using the dip-pad-dry-cure process. Titanium tetra isopropoxide (TTIP) and tetra ethyl orthosilicate (TEOS) were utilized as precursors of TiO2 and SiO2, respectively. TiO2/SiO2 composite sols were prepared in three different Ti:Si molar ratios of 1:0.43, 1:1, and 1:2.33. The self-cleaning property of cotton samples functionalized with TiO2/SiO2 was assessed based on the coffee stain removal capability and the decomposition rate of methylene blue under UV irradiation. FTIR study of the TiO2/SiO2 photocatalyst confirmed the existence of Si-O-Si and Ti-O-Si bonds. Scanning electron microscopy was employed to investigate the morphology of the functionalized cotton samples. The samples coated with TiO2/SiO2 showed greater ability of coffee stain removal and methylene blue degradation compared with samples functionalized with TiO2 demonstrating improved self-cleaning properties. The role of SiO2 in improving these properties is also discussed.


Journal of The Textile Institute | 2011

Self‐cleaning and color reduction in wool fabric by nano titanium dioxide

Majid Montazer; Esfandiar Pakdel

Wool is a textile material that is valued for its strength, warmth, water resistance, and texture. But this natural fiber of the protein keratin lacks the stain resistance of synthetic fabrics and is also generally susceptible to harsh processing conditions. In this study, raw and oxidized wool fabrics were treated with nano titanium dioxide (TiO2) powder in an ultrasonic bath. These particles were linked to the wool surface by butane tetra carboxylic acid and also sodium hypophosphite was used as a catalyst. The photo‐catalytic activity of TiO2 nanoparticles deposited on the wool fabrics was followed by the degradation of Acid Blue 113 as a stain and also determined by the degradation rate of food stains such as coffee, tea, and fruit juice under the ultraviolet rays. The results showed that increasing the amount of nano TiO2 leads to improved degradation of stains on the treated fabric.


Textile Research Journal | 2015

Assimilating the photo-induced functions of TiO2-based compounds in textiles : emphasis on the sol-gel process

Esfandiar Pakdel; Walid A. Daoud; Xungai Wang

Numerous investigations have recently been conducted to enhance the intrinsic properties of textiles and add new functionalities to textile products. The photocatalytic features of nanoparticles, notably titanium dioxide (TiO2), have played a pivotal role in this pursuit. This review article presents an overview of the use of pure as well as modified TiO2 in textiles. In addition, some of TiO2 modification methods, pertinent photocatalytic mechanisms and potential applications of metallic and non-metallic nanocomposites of TiO2 in functionalizing textiles, are highlighted. Furthermore, current research accomplishments and future prospects in this field are discussed.


Journal of The Textile Institute | 2015

Self-cleaning wool: effect of noble metals and silica on visible-light-induced functionalities of nano TiO2 colloid

Esfandiar Pakdel; Walid A. Daoud; Tarannum Afrin; Lu Sun; Xungai Wang

This study intends to enhance the functionality of titanium dioxide (TiO2) nanoparticles applied to wool fabrics under visible light. Herein, TiO2, TiO2/SiO2, TiO2/Metal, and TiO2/Metal/SiO2 nanocomposite sols were synthesized and applied to wool fabrics through a low-temperature sol–gel method. The impacts of three types of noble metals, namely gold (Au), platinum (Pt), and silver (Ag), on the photoefficiency of TiO2 and TiO2/SiO2 under visible light were studied. Different molar ratios of Metal toTiO2 (0.01, 0.1, 0.5, and 1%) were employed in synthesizing the sols. Photocatalytic efficiency of fabrics was analyzed through monitoring the removal of red wine stain and degradation of methylene blue under simulated sunlight and visible light, respectively. Also, the antimicrobial activity against Escherichia coli (E. coli) bacterium and the mechanical properties of fabrics were investigated. Through applying binary and ternary nanocomposite sols to fabrics, an enhanced visible-light-induced self-cleaning property was imparted to wool fabrics. It was concluded that the presence of silica and optimized amount of noble metals had a synergistic impact on boosting the photocatalytic and antimicrobial activities of coated samples. The fabrics were further characterized using attenuated total reflectance, energy-dispersive X-ray spectrometry, and scanning electron microscopy images.


Journal of Colloid and Interface Science | 2015

Photostability of wool fabrics coated with pure and modified TiO2 colloids.

Esfandiar Pakdel; Walid A. Daoud; Lu Sun; Xungai Wang

The surface of wool fabrics was coated with TiO2 and TiO2-based nanocomposite colloids and the impact of this coating on the photostability of wool was investigated. TiO2 along with TiO2/Metal and TiO2/Metal/SiO2 sols were synthesized through a low-temperature sol-gel method and applied to fabrics. Composite colloids were synthesized through integrating the silica and three noble metals of silver (Ag), gold (Au) and platinum (Pt) into the synthesis process of sols. Four different molar ratios of Metal to TiO2 (0.01%, 0.1%, 0.5% and 1%) were used to elucidate the role of metal type and amount on the obtained features. Photostability and UV protection features of fabrics were evaluated through measuring the photo-induced chemiluminescence (PICL), photoyellowing rate and ultraviolet protection factor (UPF) of fabrics. PICL and photoyellowing tests were carried out under UVA and UVC light sources, respectively. PICL profiles demonstrated that the presence of pure and modified TiO2 nanoparticles on fabrics reduced the intensity of PICL peak indicating a lower amount of polymer free radicals in coated wool, compared to that of pristine fabric. Moreover, a higher PICL peak intensity as well as photoyellowing rate was observed on fabrics coated with modified colloids in comparison with pure TiO2. The surface morphology of fabrics was further characterized using FESEM images.


Journal of Colloid and Interface Science | 2015

Reprint of: Photostability of wool fabrics coated with pure and modified TiO2 colloids☆

Esfandiar Pakdel; Walid A. Daoud; Lu Sun; Xungai Wang

The surface of wool fabrics was coated with TiO2 and TiO2-based nanocomposite colloids and the impact of this coating on the photostability of wool was investigated. TiO2 along with TiO2/Metal and TiO2/Metal/SiO2 sols were synthesized through a low-temperature sol-gel method and applied to fabrics. Composite colloids were synthesized through integrating the silica and three noble metals of silver (Ag), gold (Au) and platinum (Pt) into the synthesis process of sols. Four different molar ratios of Metal to TiO2 (0.01%, 0.1%, 0.5% and 1%) were used to elucidate the role of metal type and amount on the obtained features. Photostability and UV protection features of fabrics were evaluated through measuring the photo-induced chemiluminescence (PICL), photoyellowing rate and ultraviolet protection factor (UPF) of fabrics. PICL and photoyellowing tests were carried out under UVA and UVC light sources, respectively. PICL profiles demonstrated that the presence of pure and modified TiO2 nanoparticles on fabrics reduced the intensity of PICL peak indicating a lower amount of polymer free radicals in coated wool, compared to that of pristine fabric. Moreover, a higher PICL peak intensity as well as photoyellowing rate was observed on fabrics coated with modified colloids in comparison with pure TiO2. The surface morphology of fabrics was further characterized using FESEM images.


Cellulose | 2017

Enhanced antimicrobial coating on cotton and its impact on UV protection and physical characteristics

Esfandiar Pakdel; Walid A. Daoud; Tarannum Afrin; Lu Sun; Xungai Wang

This research intends to enhance the antimicrobial activity of cotton fabrics coated with metallized TiO2-based colloids through integrating noble metals (Ag, Au) and silica in the synthesis process. Colloids were synthesized through a low-temperature sol–gel method and applied to the surface of fabrics at ambient temperature. Four molar ratios of metal to TiO2 (0.01, 0.1, 0.5 and 1%) were used in the synthesis process of colloids to elucidate the impacts of metal type and concentration on the antimicrobial activity of fabrics. The antimicrobial property of coated fabrics was studied through monitoring the growth reduction rate of Escherichia coli (E. coli) bacterium in dark. The UV protection property of coated fabrics was analyzed based on the ultraviolet protection factor (UPF) and UV transmittance rates of fabrics. Moreover, the impact of coating process on the mechanical characteristics of fabrics was examined based on changes in fabric tensile strength and air permeability. The surface morphology and elemental composition of coated fabrics were characterized using SEM images and EDS analysis, respectively. It was observed that the presence of noble metals significantly enhanced the antimicrobial property of fabrics particularly for samples coated with Ag-modified colloids. Also, the presence of metals and silica showed positive and negative impacts on UPF values of fabrics, respectively. While the fabrics’ tensile strength improved, the air permeability decreased to some extent after coating. The role of influencing parameters such as the type and concentration of metals, the presence of silica, and the associated mechanisms were discussed.


Active coatings for smart textiles | 2016

Nanotechnology-based coating techniques for smart textiles

M. Parvinzadeh Gashti; Esfandiar Pakdel; F. Alimohammadi

Nanotechnology-based textile coating is a combined approach to textile engineering which mainly relies on using nanoscale materials and novel methods to produce smart finishing. Several methods have been introduced to generate smart coatings on textiles including the sol–gel technique, layer-by-layer technique, cross-linking by polymers, and thin film deposition. Nanofibre coating of different metallic and nonmetallic substrates has been intensively considered for sensory and infrastructure purposes. This chapter provides an overview of nanotechnology-based coating approaches with a detailed discussion of applications in practical and potential fields. Future trends of new types of smart coatings on textiles are also presented.

Collaboration


Dive into the Esfandiar Pakdel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Walid A. Daoud

City University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jian Zhao

Tianjin Polytechnic University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge