Esperanza C. Cabrera
De La Salle University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Esperanza C. Cabrera.
PLOS ONE | 2016
Demetrio L. Valle; Esperanza C. Cabrera; Juliana Janet M. Puzon; Windell L. Rivera
Piper betle L. has traditionally been used in alternative medicine in different countries for various therapeutic purposes, including as an anti-infective agent. However, studies reported in the literature are mainly on its activities on drug susceptible bacterial strains. This study determined the antimicrobial activities of its ethanol, methanol, and supercritical CO2 extracts on clinical isolates of multiple drug resistant bacteria which have been identified by the Infectious Disease Society of America as among the currently more challenging strains in clinical management. Assay methods included the standard disc diffusion method and the broth microdilution method for the determination of the minimum inhibitory concentration (MIC) and the minimum bactericidal concentrations (MBC) of the extracts for the test microorganisms. This study revealed the bactericidal activities of all the P. betle leaf crude extracts on methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE), extended spectrum β-lactamase-producing Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, and metallo-β-lactamase-producing Pseudomonas aeruginosa and Acinetobacter baumannii, with minimum bactericidal concentrations that ranged from 19μg/ml to 1250 μg/ml. The extracts proved to be more potent against the Gram positive MRSA and VRE than for the Gram negative test bacteria. VRE isolates were more susceptible to all the extracts than the MRSA isolates. Generally, the ethanol extracts proved to be more potent than the methanol extracts and supercritical CO2 extracts as shown by their lower MICs for both the Gram positive and Gram negative MDRs. MTT cytotoxicity assay showed that the highest concentration (100 μg/ml) of P. betle ethanol extract tested was not toxic to normal human dermal fibroblasts (HDFn). Data from the study firmly established P. betle as an alternative source of anti-infectives against multiple drug resistant bacteria.
Evidence-based Complementary and Alternative Medicine | 2016
Demetrio L. Valle; Juliana Janet M. Puzon; Esperanza C. Cabrera; Windell L. Rivera
This study isolated and identified the antimicrobial compounds of Philippine Piper betle L. leaf ethanol extracts by thin layer chromatography- (TLC-) bioautography and gas chromatography-mass spectrometry (GC-MS). Initially, TLC separation of the leaf ethanol extracts provided a maximum of eight compounds with R f values of 0.92, 0.86, 0.76, 0.53, 0.40, 0.25, 0.13, and 0.013, best visualized when inspected under UV 366 nm. Agar-overlay bioautography of the isolated compounds demonstrated two spots with R f values of 0.86 and 0.13 showing inhibitory activities against two Gram-positive multidrug-resistant (MDR) bacteria, namely, methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus. The compound with an R f value of 0.86 also possessed inhibitory activity against Gram-negative MDR bacteria, namely, carbapenem-resistant Enterobacteriaceae-Klebsiella pneumoniae and metallo-β-lactamase-producing Acinetobacter baumannii. GC-MS was performed to identify the semivolatile and volatile compounds present in the leaf ethanol extracts. Six compounds were identified, four of which are new compounds that have not been mentioned in the medical literature. The chemical compounds isolated include ethyl diazoacetate, tris(trifluoromethyl)phosphine, heptafluorobutyrate, 3-fluoro-2-propynenitrite, 4-(2-propenyl)phenol, and eugenol. The results of this study could lead to the development of novel therapeutic agents capable of dealing with specific diseases that either have weakened reaction or are currently not responsive to existing drugs.
Pharmacognosy Research | 2015
Consolacion Y. Ragasa; Esperanza C. Cabrera; Oscar B. Torres; Adiel Inah Buluran; Dinah L. Espineli; Dennis D. Raga; Chien-Chang Shen
Objectives: To isolate the secondary metabolites from the dichloromethane (DCM) extracts of Glinus oppositifolius; to test for the cytotoxicity of a new triterpene, oppositifolone (1); and to test for the hypoglycemic, analgesic, and antimicrobial potentials of 1, DCM and aqueous leaf extracts of G. oppositifolius. Methods: The compounds were isolated by silica gel chromatography and identified by nuclear magnetic resonance spectroscopy. The cytotoxicity potential of 1 was tested using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Triterpene 1, DCM, and aqueous leaf extracts were tested for hypoglycemic potential using the oral glucose tolerance test; analgesic potential using the tail-flick assay, and antimicrobial potential using the disc diffusion method. Results: The DCM extracts of G. oppositifolius afforded 1, squalene, spinasterol, oleanolic acid, phytol, and lutein from the leaves; squalene and spergulagenin A from the stems; and spinasterol from the roots. Triterpene 1 was cytotoxic against human colon carcinoma 116 with an IC 50 value of 28.7 but did not exhibit cytotoxicity against A549. The aqueous leaf extract at 200 mg/kg body weight (BW) exhibited hypoglycemic activity with a pronounced % blood glucose reduction of 70.76% ±17.4% within 0.5 h after introduction. The DCM leaf extract showed a lower % blood glucose reduction of 18.52% ±13.5% at 200 mg/kg BW within 1.5 h after introduction, while 1 did not exhibit hypoglycemic activity. The samples did not exhibit analgesic property and were inactive against multiple drug resistant bacterial pathogens. Conclusion: The compounds responsible for the hypoglycemic activity of G. oppositifolius which are fast acting (0.5 h) are found in the aqueous leaf extract.
Asian pacific Journal of Tropical Biomedicine | 2015
Demetrio L. Valle; Jeannie I. Andrade; Juliana Janet M. Puzon; Esperanza C. Cabrera; Windell L. Rivera
International Journal of Medicinal Mushrooms | 2014
Rich Milton R. Dulay; Minerva C. Arenas; Sofronio P. Kalaw; Renato G. Reyes; Esperanza C. Cabrera
Philippine Agricultural Scientist | 2013
Rich Milton R. Dulay; Sofronio P. Kalaw; Renato G. Reyes; Esperanza C. Cabrera; Noel F. Alfonso
Archive | 2010
Esperanza C. Cabrera; Dahlia Teresa Ramirez-Argamosa
Philippine Agricultural Scientist | 2011
Lisa E. Lamberte; Esperanza C. Cabrera; Windell L. Rivera
Journal of Microbiology Immunology and Infection | 2009
Esperanza C. Cabrera; Roslyn D. M. Rodriguez
Tropical Medicine and Health | 2016
Demetrio L. Valle; Phyllis Anne P. Paclibare; Esperanza C. Cabrera; Windell L. Rivera