Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Esra Bozgeyik is active.

Publication


Featured researches published by Esra Bozgeyik.


Gene | 2015

Differential expressions of cancer-associated genes and their regulatory miRNAs in colorectal carcinoma.

Murat Kara; Onder Yumrutas; Onder Ozcan; Özgür İlhan Çelik; Esra Bozgeyik; Ibrahim Bozgeyik; Sener Tasdemir

Colorectal cancer is one of the frequently seen malignancies in the world. To date, several oncogenes and tumor suppressor genes have been identified and linked to colorectal cancer pathogenesis. Although recent advances in the diagnosis and therapy of colorectal cancer are promising, identifying novel genetic contributors is still high priority. In the present study, expression profile of some cancer-related genes and their regulatory miRNA molecules were evaluated by using a high-throughput real-time PCR method. For the study, a total of 54 patients diagnosed with CRC and normal colon tissue samples of 42 healthy controls were included. For the expression analysis, total RNA was extracted from FFPE tissue samples and converted to cDNA. All expression analyses were assessed by using Fluidigm Microfluidic Dynamic Array chips for 96 samples and the reactions were held in Fluidigm BioMark™ HD System Real-Time PCR. As a result of the study, expression of the ADAMTS1, FHIT, RUNX1, RUNX3 and WWOX genes was shown to be significantly altered in CRC tissues in contrast to normal tissue samples. Moreover, miR-378a-3p, miR-155-5p, miR-193b-3p, miR-96-5p, miR-17-5p, miR-27a-3p, miR-133b, miR-203a, miR-205-5p, miR-34c-5p, miR-130a-3p, miR-301a-3p, miR-132-3p, miR-222-3p, miR-34a-5p, miR-21-5p, miR-29a-3p and miR-29b-3p were found to be significantly deregulated in CRC. Consequently, results of the current study strongly suggest the involvement of novel cancer-related genes and their regulatory miRNAs in CRC physiopathology.


Gene | 2016

Gene expression profiles of autophagy-related genes in multiple sclerosis

Mehri Igci; Mehmet Baysan; Remzi Yigiter; Mustafa Ulasli; Sırma Geyik; Recep Bayraktar; İbrahim Bozgeyik; Esra Bozgeyik; Ali Bayram; Ecir Ali Cakmak

Multiple sclerosis (MS) is an imflammatory disease of central nervous system caused by genetic and environmental factors that remain largely unknown. Autophagy is the process of degradation and recycling of damaged cytoplasmic organelles, macromolecular aggregates, and long-lived proteins. Malfunction of autophagy contributes to the pathogenesis of neurological diseases, and autophagy genes may modulate the T cell survival. We aimed to examine the expression levels of autophagy-related genes. The blood samples of 95 unrelated patients (aged 17-65years, 37 male, 58 female) diagnosed as MS and 95 healthy controls were used to extract the RNA samples. After conversion to single stranded cDNA using polyT priming: the targeted genes were pre-amplified, and 96×78 (samples×primers) qRT-PCR reactions were performed for each primer pair on each sample on a 96.96 array of Fluidigm BioMark™. Compared to age- and sex-matched controls, gene expression levels of ATG16L2, ATG9A, BCL2, FAS, GAA, HGS, PIK3R1, RAB24, RGS19, ULK1, FOXO1, HTT were significantly altered (false discovery rate<0.05). Thus, altered expression levels of several autophagy related genes may affect protein levels, which in turn would influence the activity of autophagy, or most probably, those genes might be acting independent of autophagy and contributing to MS pathogenesis as risk factors. The indeterminate genetic causes leading to alterations in gene expressions require further analysis.


Tumor Biology | 2016

MTUS1 and its targeting miRNAs in colorectal carcinoma: significant associations

Onder Ozcan; Murat Kara; Onder Yumrutas; Esra Bozgeyik; Ibrahim Bozgeyik; Özgür İlhan Çelik

Deregulated microRNA (miRNA) expression has been shown to be involved in the pathogenesis of several types of cancers including colorectal cancer (CRC). Thus, determining miRNA targets of genes that play critical role in the malignant transformation is very important. Here, expression levels of tumor suppressor microtubule-associated tumor suppressor 1 (MTUS1) and its regulatory miRNAs were reported. Predicted and validated targets of MTUS1 gene was determined by a computational approach. Expressions of MTUS1 and miRNAs were determined by using 96.96 Dynamic Array™ integrated fluidic circuit (Fluidigm). As a result, MTUS1 levels were found to be diminished in formalin-fixed, paraffin-embedded (FFPE) tissue samples of CRC patients compared to controls. Also, several of MTUS1 targeting miRNAs were found to be upregulated in CRC samples (miR-373-3p, 183-5p, 142-5p, 200c-3p, 19a-3p, -20a-5p, -181a-5p, -184, -181d-5p, -372-3p, 27b-3p, 98-5p, -let-7i-5p, -let-7d-5p, -let-7g-5p, -let-7b-5p, and -let-7c-5p). Of these miRNAs, miR-135b-5p, -373-3p, 183-5p, 142-5p, 200c-3p, 19a-3p showed marked expression levels. In contrast, expression levels of let-7a-5p, 7e-5p, 7f-5p, hsa-miR-125a-5p, and 125b-5p were found to be downregulated in CRC tissues. Accordingly, some of the overexpressed miRNAs especially the miR-135b-5p, -373-3p, 183-5p, 142-5p, 200c-3p, and 19a-3p may play key roles in CRC pathophysiology through MTUS1. In contrast, let-7a-5p, 7e-5p, 7f-5p, miR-125a-5p, and 125b-5p may play important roles in CRC carcinogenesis independent from the MTUS1. In conclusion, MTUS1 targeting miRNAs may play key roles in the development of CRC by downregulating tumor suppressor MTUS1.


Medical Science Monitor | 2016

DNA Methylation of BDNF Gene in Schizophrenia

Umit Sertan Copoglu; Mehri Igci; Esra Bozgeyik; M. Hanifi Kokaçya; Yusuf Ziya Igci; Recep Dokuyucu; Mustafa Ari; Haluk A. Savas

Background Although genetic factors are risk factors for schizophrenia, some environmental factors are thought to be required for the manifestation of disease. Epigenetic mechanisms regulate gene functions without causing a change in the nucleotide sequence of DNA. Brain-derived neurotrophic factor (BDNF) is a neurotrophin that regulates synaptic transmission and plasticity. It has been suggested that BDNF may play a role in the pathophysiology of schizophrenia. It is established that methylation status of the BDNF gene is associated with fear learning, memory, and stressful social interactions. In this study, we aimed to investigate the DNA methylation status of BDNF gene in patients with schizophrenia. Material/Methods The study included 49 patients (33 male and 16 female) with schizophrenia and 65 unrelated healthy controls (46 male and 19 female). Determination of methylation pattern of CpG islands was based on the principle that bisulfite treatment of DNA results in conversion of unmethylated cytosine residues into uracil, whereas methylated cytosine residues remain unmodified. Methylation-specific PCR was performed with primers specific for either methylated or unmethylated DNA. Results There was no significant difference in methylated or un-methylated status for BDNF promoters between schizophrenia patients and controls. The mean duration of illness was significantly lower in the hemi-methylated group compared to the non-methylated group for BDNF gene CpG island-1 in schizophrenia patients. Conclusions Although there were no differences in BDNF gene methylation status between schizophrenia patients and healthy controls, there was an association between duration of illness and DNA methylation.


Gene | 2016

High-throughput screening of Sirtuin family of genes in breast cancer.

Mehri Igci; Mehmet Emin Kalender; Ersin Borazan; Ibrahim Bozgeyik; Recep Bayraktar; Esra Bozgeyik; Celaletdin Camci; Ahmet Arslan

Mammalian Sirtuins have been shown to perform distinct cellular functions and deregulated expression of these genes was reported to be involved in the development of various malignancies including breast cancer. An increasing number of evidence indicates that Sirtuins have both tumor promoter and tumor suppressor functions. However, the roles of Sirtuins have not been well-reported in breast cancer. In the present study, quantitative expression levels of Sirtuins (SIRT1-7) in breast cancer patients and breast cancer cell lines (MCF-7 and SKBR3) and control cell line (CRL-4010) were assessed by using a high-throughput real-time PCR method. As a result, Sirtuins were found to be differentially expressed in breast cancer tissues and cancer cell lines. Particularly, expressions of SIRT1 and SIRT4 were found to be significantly down-regulated in breast cancer tissues and SKBR3 breast cancer cells. In contrast, SIRT2, SIRT3, and SIRT5 genes were shown to be up-regulated in our study. Although SIRT6 and SIRT7 were also up-regulated in breast cancer tissues, these expression changes were statistically insignificant. Additionally, SIRT2, SIRT3, SIRT5, SIRT6 and SIRT7 were found to be differentially expressed in breast cancer cell lines. Yet, these changes were not well-correlated with tissue expression levels. In conclusion, Sirtuin family of genes shows differential expressions in breast cancer tissues and cells and SIRT1 and SIRT4 seem to play key tumor suppressor roles in breast cancer development. Herein, we report expression levels of Sirtuin family of genes in both breast cancer tissues and cancer cell lines simultaneously.


Tumor Biology | 2016

A novel variable exonic region and differential expression of LINC00663 non-coding RNA in various cancer cell lines and normal human tissue samples

Esra Bozgeyik; Yusuf Ziya Igci; Sami Jacksi Mf; Arman K; Gurses Sa; Ibrahim Bozgeyik; Pala E; Onder Yumrutas; Temiz E; Igci M

Long non-coding RNAs (lncRNAs) are found to play crucial roles in several biological processes and have been associated with many complex human diseases including cancers. Several lines of evidences indicate that lncRNAs deregulated in many cancer tissues. In this particular study, differential expression of long intergenic non-coding RNA 663 (LINC00663) was demonstrated in various cancer cell lines and healthy human tissues by using RT-PCR and qPCR methods. While expression level of LINC00663 was most prominent in thyroid gland and uterus, it is least expressed in skeletal muscle tissues. Moreover, LINC00663 was found to be differentially expressed in various cancer cells. Particularly, its expression was highly diminished in DU-145, PC3, HGC-27, CRL-1469, A549, MCF7, and BCPAP cancer cells. Also, LINC00663 expression was most prominent in A172 glioblastoma cells. Additionally, a novel splice variant of LINC00663 RNA was also detected. The sequence and Basic Local Alignment Search Tool (BLAST) analysis results revealed the presence of a novel exonic region between exons 2 and 3. Subsequently, five potential splice variants showing high level of variation have been identified. Secondary structures of these variants with minimum free energy were also demonstrated. Furthermore, putative microRNA (miRNA) binding sites to these variants have been shown. In conclusion, LINC00663 was shown to be differentially expressed in various human tissues and cancer cell lines. Also, LINC00663 undergoes alternative splicing and the novel exonic region alters its secondary structure and its interactions with potential targeting miRNAs. The role of LINC00663 in cancer formation further needs to be investigated with a wide range of studies.


Tumor Biology | 2015

The role of the UTS2 gene polymorphisms and plasma Urotensin-II levels in breast cancer

Onder Yumrutas; Serdar Oztuzcu; Hakan Buyukhatipoglu; Ibrahim Bozgeyik; Esra Bozgeyik; Yusuf Ziya Igci; Haydar Bagis; M. Ozgur Cevik; M. Emin Kalender; Zeynep Eslik; Ahmet Arslan

Breast cancer is the most common malignancy predominantly affecting women. To date, numerous numbers of studies were reported novel genetic contributors with diagnostic, prognostic, and therapeutic potential for the breast carcinogenesis. However, the role of urotensin-II in breast carcinogenesis has not been elucidated yet. Urotensin-II is a somatostatin-like cyclic tiny peptide identified by its potent vasoconstrictor activity. Soon after its discovery, its involvement in many disease states as well as its expression in various tissues including the tumors have been demonstrated. Moreover, there is strong evidence that suggest urotensin-II as the significant contributor of angiogenesis as well as cell proliferation and tumor biology. In this study, enzyme-linked immunosorbent assay (ELISA) and restriction fragment length polymorphism analysis were used to evaluate plasma levels of urotensin-II and Thr21Met and Ser89Asn polymorphisms of UTS2 gene in breast cancer patients. In the present case-control study, we noticed a significant decrease in the levels of urotensin-II protein in the plasma of the breast cancer patients (p < 0.05). Also, Thr21Met polymorphism in the UTS2 gene was associated with the risk of developing breast cancer (p < 0.0001), whereas the genotype frequency of Ser89Asn was found to be similar in patients and controls (p > 0.05). In addition, we demonstrated the gradual decreasing of urotensin-II protein levels from TT and TM to MM genotypes. In conclusion, these results strongly suggest that urotensin-II could contribute to breast carcinogenesis and Thr21Met polymorphism can be an important risk factor in developing breast tumors.


Gene | 2016

MTUS1 tumor suppressor and its miRNA regulators in fibroadenoma and breast cancer.

Murat Kara; Mehmet Kaplan; Ibrahim Bozgeyik; Onder Ozcan; Özgür İlhan Çelik; Esra Bozgeyik; Onder Yumrutas

Breast cancer is major public health problem predominantly effects female population. Current therapeutic approaches to deal with breast cancer are still lack of effectiveness. Thus, identifying/developing novel strategies to fight against breast cancer is very important. The frequent deletions at 8p21.3-22 chromosomal location nearby D8S254 marker enabled the discovery of a novel tumor suppressor gene, MTUS1. Subsequently, MTUS1 was demonstrated to be less expressed in a variety cancer types including breast cancer. Also, it is obvious that gene expression is widely regulated by miRNAs. Here, we aimed to report differential expression of MTUS1 and its regulatory miRNAs in breast cancer and fibroadenoma tissues. Dynamic analysis of MTUS1 expression levels and its miRNAs regulators were attained by Fluidigm 96×96 Dynamic Array Expression chips and reactions were performed in Fluidigm BioMark™ HD System qPCR. Consequently, MTUS1 mRNA levels were significantly diminished in breast cancer tissues and elevated in fibroadenoma tissues. Also, among MTUS1 targeting miRNAs, miR-183-5p was identified to be overexpressed in breast cancer and down-regulated in fibroadenoma tissues. Also, expression levels of MTUS1 and miR-183-5p were well correlated with clinical parameters. In particular, MTUS1 expression was found to be diminished and miR-183-5p expression was elevated with the advancing stage. In conclusion, as a potential therapeutic target, miR-183-5p can be a chief regulator of MTUS1 and MTUS1-miR-183-5p axis may have significant influence in the pathology of breast cancer.


Tumor Biology | 2015

Differential expression of the UGT1A family of genes in stomach cancer tissues

Beyhan Cengiz; Onder Yumrutas; Esra Bozgeyik; Ersin Borazan; Yusuf Ziya Igci; Ibrahim Bozgeyik; Serdar Oztuzcu

Uridine 5′-diphospho-glucuronosyltransferases (UGT) are the key players in the biotransformation of drugs, xenobiotics, and endogenous compounds. Particularly, UDP-glucuronosyltransferase 1A (UGT1A) participates in a wide range of biological and pharmacological processes and plays a critical role in the conjugation of endogenous and exogenous components. Thirteen alternative splicing products were produced from UGT1A gene locus designated as UGT1A1 and UGT1A3–10. A growing amount of evidence suggests that they have important roles in the carcinogenesis which is well documented by colon, liver, pancreas, and kidney cancer studies. Here, we report differential expressions of UGT1A genes in normal and tumor tissues of stomach cancer patients. Total numbers of 49 patients were enrolled for this study, and expression analysis of UGT1A genes was evaluated by the real-time PCR method. Accordingly, UGT1A1, UGT1A8, and UGT1A10 were found to be upregulated, and UGT1A3, UGT1A5, UGT1A7, and UGT1A9 were downregulated in stomach tumors. No expression changes were observed in UGT1A4. Also, UGT1A6 transcription variants were significantly upregulated in stomach cancer tissues compared to normal stomach tissue. Additionally, UGT1A7 gene showed highest expression in both normal and tumoral tissues, and interestingly, UGT1A7 gene expression was significantly reduced in stage II patients as compared to other patients. In conclusion, UGT1A genes are differentially expressed in normal and tumoral stomach tissues and expression changes of these genes may affect the development and progression of various types of cancer including the cancer of the stomach.


Gene | 2017

MTUS1, a gene encoding angiotensin-II type 2 (AT2) receptor-interacting proteins, in health and disease, with special emphasis on its role in carcinogenesis

Ibrahim Bozgeyik; Onder Yumrutas; Esra Bozgeyik

Loss of tumor suppressor activity is a frequent event in the formation and progression of tumors and has been listed as an important hallmark of cancers. Microtubule-Associated Scaffold Protein 1 (MTUS1) is a candidate tumor suppressor gene which is reported to be frequently down-regulated in a variety of human cancers including pancreas, colon, bladder, head-and-neck, ovarian, breast cancers, gastric, lung cancers. It is also reported to be implicated in several types of pathologies such as cardiac hypertrophy, atherosclerosis, and SLE-like lymphoproliferative diseases. Moreover, MTUS1-encoded proteins are shown to be involved in the regulation of vital cellular processes such as proliferation, differentiation, DNA repair, inflammation, vascular remodeling and senescence. However, the current knowledge is very limited about the role of this gene in human cancers as well as other type diseases. Besides, there is no literature report which summarizes and criticizes the importance of MTUS1 in the cellular processes, especially in the processes of carcinogenesis. Accordingly, in this comprehensive review, we tried to shed light on the role of tumor suppressor MTUS1/ATIP in health and disease, putting special emphasis on its role in the development and progression of human cancers as well as associated molecular mechanisms and the reasons behind MTUS1/ATIP deficiency, which have been not well documented previously.

Collaboration


Dive into the Esra Bozgeyik's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kaifee Arman

University of Gaziantep

View shared research outputs
Top Co-Authors

Avatar

Mehri Igci

University of Gaziantep

View shared research outputs
Top Co-Authors

Avatar

Ahmet Arslan

University of Gaziantep

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge