Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Esra Capanoglu is active.

Publication


Featured researches published by Esra Capanoglu.


Journal of Agricultural and Food Chemistry | 2008

Antioxidants, phenolic compounds, and nutritional quality of different strawberry genotypes

Sara Tulipani; Bruno Mezzetti; Franco Capocasa; Stefano Bompadre; Jules Beekwilder; C. H. Ric De Vos; Esra Capanoglu; Arnaud G. Bovy; Maurizio Battino

Strawberry contains high levels of micronutrients and phytochemical compounds. These exhibit functional roles in plant growth and metabolism and are also essential for the nutritional and organoleptic qualities of the fruit. The aim of the present work was to better characterize the phytochemical and antioxidant profiles of the fruit of nine different genotypes of strawberry, by measuring the total flavonoid, anthocyanin, vitamin C, and folate contents. Cultivar effects on the total antioxidant capacities of strawberries were also tested. In addition, the individual contribution of the main antioxidant compounds was assessed by HPLC separation coupled to an online postcolumn antioxidant detection system. This study showed the important role played by the genetic background on the chemical and antioxidant profiles of strawberry fruits. Significant differences were found between genotypes for the total antioxidant capacity and for all tested classes of compounds. The HPLC analyses confirmed qualitative and quantitative variability in the antioxidant profiles. These studies show that differences exist among cultivars, applicable in dietary studies in human subjects.


Journal of Agricultural and Food Chemistry | 2008

Changes in antioxidant and metabolite profiles during production of tomato paste.

Esra Capanoglu; Jules Beekwilder; Dilek Boyacioglu; Robert D. Hall; Ric C. H. de Vos

Tomato products and especially concentrated tomato paste are important sources of antioxidants in the Mediterranean diet. Tomato fruit contain well-known antioxidants such as vitamin C, carotenoids, flavonoids, and hydroxycinnamic acids. The industrial processing of this fruit into tomato paste involves several treatments that potentially affect the final profile of antioxidants and other metabolites in the commercial product. Here we have used both biochemical and metabolomic techniques to assess the effect of each separate step in the industrial production chain starting from fresh fruit to the final tomato paste. Material was collected from five independent tomato paste production events spread over two successive years. Samples comprised the intact ripe fruits and semifinished products after fruit-breaking, separation of the pulp from skin and seeds, evaporation, and finally after canning and pasteurization. The effect of each processing step was determined by different types of analysis. First, the total antioxidant capacity and total phenolic content were determined by commonly used spectrophotometric methods. Second, individual antioxidants in the extracts were identified and compared using an HPLC with online antioxidant detection. Third, in each sample the levels of the major individual antioxidants present, i.e., vitamin C, phenolic compounds (such as rutin and chlorogenic acid), tocopherols, and carotenoids, were quantified. Fourth, an untargeted metabolomic approach using LC-QTOF-MS was used to identify those production steps that have the largest impact on the overall metabolic profile in the final paste as compared to the original fruits. This multifaceted approach has revealed that each processing step induces specific alterations in the metabolic profile, as determined by the different analysis procedures, and that in particular the fruit-breaking step and the removal of seed and skin significantly affect the levels of antioxidants and many other metabolites present in commercial tomato paste.


Nutrients | 2016

The Reciprocal Interactions between Polyphenols and Gut Microbiota and Effects on Bioaccessibility

Tugba Ozdal; David A. Sela; Jianbo Xiao; Dilek Boyacioglu; Fang Chen; Esra Capanoglu

As of late, polyphenols have increasingly interested the scientific community due to their proposed health benefits. Much of this attention has focused on their bioavailability. Polyphenol–gut microbiota interactions should be considered to understand their biological functions. The dichotomy between the biotransformation of polyphenols into their metabolites by gut microbiota and the modulation of gut microbiota composition by polyphenols contributes to positive health outcomes. Although there are many studies on the in vivo bioavailability of polyphenols, the mutual relationship between polyphenols and gut microbiota is not fully understood. This review focuses on the biotransformation of polyphenols by gut microbiota, modulation of gut microbiota by polyphenols, and the effects of these two-way mutual interactions on polyphenol bioavailability, and ultimately, human health.


Critical Reviews in Food Science and Nutrition | 2016

Advance on the Flavonoid C-glycosides and Health Benefits

Jianbo Xiao; Esra Capanoglu; Amir Reza Jassbi; Anca Miron

The dietary flavonoids, especially their glycosides, are the most vital phytochemicals in diets and are of great general interest due to their diverse bioactivity. Almost all natural flavonoids exist as their O-glycoside or C-glycoside forms in plants. The dietary flavonoid C-glycosides have received less attention than their corresponding O-glycosides. This review summarizes current knowledge regarding flavonoid C-glycosides and their influence on human health. Among the flavonoid C-glycosides, flavone C-glycosides, especially vitexin, isoorientin, orientin, isovitexin and their multiglycosides are more frequently mentioned than others. Flavonoid C-monoglycosides are poorly absorbed in human beings with very few metabolites in urine and blood and are deglycosylated and degraded by human intestinal bacteria in colon. However, flavonoid C-multiglycosides are absorbed unchanged in the intestine and distributed to other tissues. Flavonoid C-glycosides showed significant antioxidant activity, anticancer and antitumor activity, hepatoprotective activity, anti-inflammatory activity, anti-diabetes activity, antiviral activity, antibacterial and antifungal activity, and other biological effects. It looks like that the C-glycosylflavonoids in most cases showed higher antioxidant and anti-diabetes potential than their corresponding O-glycosylflavonoids and aglycones. However, there is a lack of in vivo data on the biological benefits of flavonoid C-glycosides. It is necessary to investigate more on how flavonoid C-glycosides prevent and handle the diseases.


Critical Reviews in Food Science and Nutrition | 2010

The effect of industrial food processing on potentially health-beneficial tomato antioxidants.

Esra Capanoglu; Jules Beekwilder; Dilek Boyacioglu; Ric C. H. de Vos; Robert D. Hall

Increasing desires from both consumers and producers to understand better which nutritive components are present in our food and how these are influenced by industrial processing strategies is resulting in extra research involving the use of state-of-the-art technologies to generate novel biochemical information. In this review, attention has been focused on tomato as this is a product eaten right across the world both as fresh produce and after having been processed in a wide variety of ways. There is a particular interest in tomato as it is a major component in the so-called “Mediterranean diet” which has recently been associated with a healthier lifestyle. Tomatoes are rich sources of a variety of nutritional compounds and especially some key antioxidant components such as the carotenoid lycopene, vitamin C, and a range of polyphenols. The potentially protective properties of these antioxidants are of great interest and the consumer has already become aware of their potential importance. Surveying the literature has revealed that much research has been done on the biochemical composition of tomato and its products. However, it remains difficult to make clear conclusions on optimizing the processing strategy. Many, apparently conflicting, findings have been reported and consequently, in this review, we have drawn attention to these and have attempted to clarify their cause. Finally, a range of recommendations has been made as to how future research might be performed in order to generate more concrete conclusions enabling recommendations towards more optimized processing strategies.


Journal of Agricultural and Food Chemistry | 2016

Antioxidant Activity/Capacity Measurement. 2. Hydrogen Atom Transfer (HAT)-Based, Mixed-Mode (Electron Transfer (ET)/HAT), and Lipid Peroxidation Assays

Reşat Apak; Mustafa Özyürek; Kubilay Güçlü; Esra Capanoglu

Measuring the antioxidant activity/capacity levels of food extracts and biological fluids is useful for determining the nutritional value of foodstuffs and for the diagnosis, treatment, and follow-up of numerous oxidative stress-related diseases. Biologically, antioxidants play their health-beneficial roles via transferring a hydrogen (H) atom or an electron (e(-)) to reactive species, thereby deactivating them. Antioxidant activity assays imitate this action; that is, antioxidants are measured by their H atom transfer (HAT) or e(-) transfer (ET) to probe molecules. Antioxidant activity/capacity can be monitored by a wide variety of assays with different mechanisms, including HAT, ET, and mixed-mode (ET/HAT) assays, generally without distinct boundaries between them. Understanding the principal mechanisms, advantages, and disadvantages of the measurement assays is important for proper selection of method for valid evaluation of antioxidant properties in desired applications. This work provides a general and up-to-date overview of HAT-based, mixed-mode (ET/HAT), and lipid peroxidation assays available for measuring antioxidant activity/capacity and the chemistry behind them, including a critical evaluation of their advantages and drawbacks.


Food Chemistry | 2013

Changes in polyphenol content during production of grape juice concentrate

Esra Capanoglu; Ric C. H. de Vos; Robert D. Hall; Dilek Boyacioglu; Jules Beekwilder

The production of grape juice concentrate on an industrial scale was evaluated and samples from the main steps of processing have been collected and analyzed. The sampling steps included the selection and washing of grapes (Nevsehir Patlak variety), pressing in order to obtain the juice separate from the seed and the skin fraction, pasteurization, clarification, filtration, evaporation, and filling-packing at 27°C with a Brix of 45°. Samples from each of the processing steps were analyzed by a number of spectrophotometric analyses. A series of anthocyanin compounds was identified using HPLC-MS, and the fate of anthocyanins, quercetin rutinoside and procyanidins was followed using HPLC. The results indicate that the removal of seed and fruit skin removes most of the procyanidins and anthocyanins, while subsequent clarification and filtration treatments further reduce the anthocyanin content.


Journal of Agricultural and Food Chemistry | 2016

Antioxidant Activity/Capacity Measurement. 3. Reactive Oxygen and Nitrogen Species (ROS/RNS) Scavenging Assays, Oxidative Stress Biomarkers, and Chromatographic/Chemometric Assays

Reşat Apak; Mustafa Özyürek; Kubilay Güçlü; Esra Capanoglu

There are many studies in which the antioxidant potential of different foods have been analyzed. However, there are still conflicting results and lack of information as a result of unstandardized assay techniques and differences between the principles of the methods applied. The measurement of antioxidant activity, especially in the case of mixtures, multifunctional or complex multiphase systems, cannot be evaluated satisfactorily using a simple antioxidant test due to the many variables influencing the results. In the literature, there are many antioxidant assays that are used to measure the total antioxidant activity/capacity of food materials. In this review, reactive oxygen and nitrogen species (ROS/RNS) scavenging assays are evaluated with respect to their mechanism, advantages, disadvantages, and potential use in food systems. On the other hand, in vivo antioxidant activity (AOA) assays including oxidative stress biomarkers and cellular-based assays are covered within the scope of this review. Finally, chromatographic and chemometric assays are reviewed, focusing on their benefits especially with respect to their time saving, cost-effective, and sensitive nature.


Food Chemistry | 2015

Influence of different processing and storage conditions on in vitro bioaccessibility of polyphenols in black carrot jams and marmalades

Senem Kamiloglu; Ayca Ayfer Pasli; Beraat Özçelik; John Van Camp; Esra Capanoglu

Black carrot is indicated to play an important role in nutrition, as it comprises a variety of health-promoting components, including polyphenols. The objective of the present study was to monitor the stability of total phenolics, antioxidant capacity and phenolic acids in black carrot jams and marmalades after processing, storage and in vitro gastrointestinal digestion. Total phenolic content and antioxidant capacity were determined using spectrophotometric methods, whereas phenolic acids were identified using HPLC-PDA. Jam and marmalade processing significantly decreased total phenolics (89.2-90.5%), antioxidant capacity (83.3-91.3%) and phenolic acids (49.5-96.7%) (p < 0.05). After 20 weeks of storage, the percent decrease in total phenolics in samples stored at 25 °C (26.4-48.0%) was slightly higher than the samples stored at 4 °C (21.0-42.5%). In addition, jam and marmalade processing led to increases in the percent recovery of bioaccessible total phenolics (7.2-12.6%) and phenolic acids (4.7-31.5%), as well as antioxidant capacity (1.4-8.1%). In conclusion, current study highlighted black carrot jams and marmalades as good sources of polyphenols, with high bioaccessibility levels.


Journal of the Science of Food and Agriculture | 2014

Home processing of tomatoes (Solanum lycopersicum): effects on in vitro bioaccessibility of total lycopene, phenolics, flavonoids, and antioxidant capacity.

Senem Kamiloglu; Melek Demirci; Saniye Selen; Gamze Toydemir; Dilek Boyacioglu; Esra Capanoglu

BACKGROUND In order to investigate the effect of home processing on the bioaccessibility of health-related constituents of tomatoes, total lycopene, phenolics, flavonoids and antioxidant capacity were determined from seven different tomato products using an in vitro gastrointestinal digestion model. Additionally, the changes in the contents of the major tomato phenolics were determined and compared for these different tomato products using HPLC. RESULTS The results revealed that paste processing and drying significantly increased the bioaccessible total lycopene content (2.2- and 3.8-fold, respectively), total phenolic content (2.3- and 2.0-fold, respectively), total flavonoid content (9.0- and 2.5-fold, respectively) and total antioxidant capacity (6.3- and 8.0-fold for the DPPH assay, 26- and 33-fold for the CUPRAC assay, respectively) (P < 0.05) compared to fresh tomatoes. HPLC analysis revealed significantly lower (P < 0.05) rutin content in puree and juice. The loss of naringenin chalcone in some tomato products, as well as its conversion into naringenin in heat-treated products was observed. CONCLUSION The current study provided valuable insights into the changes in the content and bioaccessibility of tomato antioxidants as a result of home processing.

Collaboration


Dive into the Esra Capanoglu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Senem Kamiloglu

Istanbul Technical University

View shared research outputs
Top Co-Authors

Avatar

Gamze Toydemir

Istanbul Technical University

View shared research outputs
Top Co-Authors

Avatar

Jules Beekwilder

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Robert D. Hall

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Burcu Guldiken

Istanbul Technical University

View shared research outputs
Top Co-Authors

Avatar

Gulay Ozkan

Istanbul Technical University

View shared research outputs
Top Co-Authors

Avatar

Ric C. H. de Vos

Wageningen University and Research Centre

View shared research outputs
Researchain Logo
Decentralizing Knowledge