Esra Erdal
Dokuz Eylül University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Esra Erdal.
BMC Cancer | 2009
Murat Çokaklı; Esra Erdal; Deniz Nart; Funda Yilmaz; Ozgul Sagol; Murat Kilic; Sedat Karademir; Neşe Atabey
BackgroundCaveolin-1 is the main component of caveolae membrane structures and has different roles during tumorigenesis in different cancer types with varying expression profiles, indicating that the role of caveolin-1 varies according to tumor type. In this study, we investigated the role and expression of caveolin-1 in hepatocellular carcinogenesis.MethodsWe analyzed the expression of Caveolin-1 in 96 hepatocellular carcinoma (HCC), 29 cirrhosis, 20 normal liver tissues and 9 HCC cell lines by immunostaining and western blotting, respectively. After caveolin-1 was stably transfected to HepG2 and Huh7 cells, the effects of Caveolin-1 on the cellular motility, matrix invasion and anchorage-independent growth were studied. Also, caveolae structure was disrupted in endogenously caveolin expressing cells, SNU 449 and SNU 475 by addition of methyl-β-cyclodextrin and analyzed cellular motility and invasion.ResultsIn HCC cell lines, Caveolin-1 expression is correlated to differentiation and basal motility status of these cells. The percentage of Caveolin-1 positivity was found extremely low in normal liver tissue (5%) while it was increased in cirrhosis (45%) and in HCC (66%) (p = 0.002 and p = 0.001 respectively). Cav-1 expression in poorly differentiated HCC samples has been found significantly higher than well differentiated ones (p = 0.001). The caveolin-1 expression was found significantly higher in tumor cells than its peritumoral cirrhotic tissues in HCC samples (p < 0.001). Additionally, the patients with positive staining for Caveolin-1 had significantly higher portal vein invasion than those with negative staining (p = 0.02). Caveolin-1 overexpression increased motility and invasion of HepG2 and Huh7 cells. And disruption of caveolae results in a dramatic decline in both motility and invasion abilities in SNU-449 and SNU-475 cells. Furthermore, caveolin-1 overexpression resulted in down-regulation of E-cadherin while up-regulation of Vimentin. Also, it increased secreted MMP-2 and expression levels of MMP-9 and MT1-MMP. There was no significant difference in colony formation in soft agar between stable clones and parental ones.ConclusionIn conclusion, stepwise increase in Cav-1 expression in neoplastic stage with respect to pre-neoplastic stage during hepatocellular carcinogenesis and its ability to stimulate HCC cell motility and invasiveness indicate that this protein plays a crucial role in tumor progression.
International Journal of Cancer | 2005
Esra Erdal; Nuri Ozturk; Tolga Cagatay; Emel Eksioglu-Demiralp; Mehmet Ozturk
We studied in vitro effects of glycogen synthase kinase 3β (GSK3β)‐inhibitor lithium on the growth of hepatocellular carcinoma (HCC) cells. Lithium induced strong growth inhibition (>70%) in 75% (n = 9 of 12) of cell lines, apparently independent from the status of major genes that are mutated in HCC including p53, p16INK4a, β‐catenin and Axin1. Comparative studies with a growth‐sensitive Huh7 and growth‐resistant Hep40 cell lines showed that lithium induces growth arrest in Huh7 cells but not in Hep40 cells. Lithium induced the accumulation of N‐terminally phosphorylated inactive form of GSK3β with concomitant increase in β‐catenin and β‐catenin/TCF transcriptional activity in both cell lines. This suggests that lithium‐mediated HCC growth inhibition is independent of its well‐known stimulatory effect on Wnt‐β‐catenin signaling. The main differences between Huh7 and Hep40 responses to lithium treatment were observed at the levels PKB/Akt and cyclin E proteins. Lithium induced depletion of both proteins in growth‐sensitive Huh7, but not in growth‐resistant Hep40 cells. PKB/Akt and Cyclin E are 2 major proteins that are known to be constitutively active in HCC. The targeting of both proteins with lithium may be the main reason why most HCC cells are responsive to lithium‐mediated growth inhibition, independent of their p53, retinoblastoma and Wnt‐β‐catenin pathways. The exploration of molecular mechanisms involved in lithium‐mediated growth inhibition in relation with PKB/Akt and cyclin E downregulation may provide new insights for therapy of liver tumors.
Molecular Cancer | 2012
Giray Bozkaya; Peyda Korhan; Murat Çokaklı; Esra Erdal; Ozgul Sagol; Sedat Karademir; Christopher Korch; Neşe Atabey
BackgroundHepatocyte growth factor (HGF) induced c-Met activation is known as the main stimulus for hepatocyte proliferation and is essential for liver development and regeneration. Activation of HGF/c-Met signaling has been correlated with aggressive phenotype and poor prognosis in hepatocellular carcinoma (HCC). MUC1 is a transmembrane mucin, whose over-expression is reported in most cancers. Many of the oncogenic effects of MUC1 are believed to occur through the interaction of MUC1 with signaling molecules. To clarify the role of MUC1 in HGF/c-Met signaling, we determined whether MUC1 and c-Met interact cooperatively and what their role(s) is in hepatocarcinogenesis.ResultsMUC1 and c-Met over-expression levels were determined in highly motile and invasive, mesenchymal-like HCC cell lines, and in serial sections of cirrhotic and HCC tissues, and these levels were compared to those in normal liver tissues. Co-expression of both c-Met and MUC1 was found to be associated with the differentiation status of HCC. We further demonstrated an interaction between c-Met and MUC1 in HCC cells. HGF-induced c-Met phosphorylation decreased this interaction, and down-regulated MUC1 expression. Inhibition of c-Met activation restored HGF-mediated MUC1 down-regulation, and decreased the migratory and invasive abilities of HCC cells via inhibition of β-catenin activation and c-Myc expression. In contrast, siRNA silencing of MUC1 increased HGF-induced c-Met activation and HGF-induced cell motility and invasion.ConclusionsThese findings indicate that the crosstalk between MUC1 and c-Met in HCC could provide an advantage for invasion to HCC cells through the β-catenin/c-Myc pathway. Thus, MUC1 and c-Met could serve as potential therapeutic targets in HCC.
PLOS ONE | 2013
Gokhan Yildiz; Ayca Arslan-Ergul; Sevgi Bagislar; Ozlen Konu; Haluk Yuzugullu; Ozge Gursoy-Yuzugullu; Nuri Ozturk; Cigdem Ozen; Hilal Özdağ; Esra Erdal; Sedat Karademir; Ozgul Sagol; Dilsa Mizrak; Hakan Bozkaya; Hakkı Gökhan İlk; Ozlem Ilk; Biter Bilen; Rengul Cetin-Atalay; Nejat Akar; Mehmet Ozturk
Senescence is a permanent proliferation arrest in response to cell stress such as DNA damage. It contributes strongly to tissue aging and serves as a major barrier against tumor development. Most tumor cells are believed to bypass the senescence barrier (become “immortal”) by inactivating growth control genes such as TP53 and CDKN2A. They also reactivate telomerase reverse transcriptase. Senescence-to-immortality transition is accompanied by major phenotypic and biochemical changes mediated by genome-wide transcriptional modifications. This appears to happen during hepatocellular carcinoma (HCC) development in patients with liver cirrhosis, however, the accompanying transcriptional changes are virtually unknown. We investigated genome-wide transcriptional changes related to the senescence-to-immortality switch during hepatocellular carcinogenesis. Initially, we performed transcriptome analysis of senescent and immortal clones of Huh7 HCC cell line, and identified genes with significant differential expression to establish a senescence-related gene list. Through the analysis of senescence-related gene expression in different liver tissues we showed that cirrhosis and HCC display expression patterns compatible with senescent and immortal phenotypes, respectively; dysplasia being a transitional state. Gene set enrichment analysis revealed that cirrhosis/senescence-associated genes were preferentially expressed in non-tumor tissues, less malignant tumors, and differentiated or senescent cells. In contrast, HCC/immortality genes were up-regulated in tumor tissues, or more malignant tumors and progenitor cells. In HCC tumors and immortal cells genes involved in DNA repair, cell cycle, telomere extension and branched chain amino acid metabolism were up-regulated, whereas genes involved in cell signaling, as well as in drug, lipid, retinoid and glycolytic metabolism were down-regulated. Based on these distinctive gene expression features we developed a 15-gene hepatocellular immortality signature test that discriminated HCC from cirrhosis with high accuracy. Our findings demonstrate that senescence bypass plays a central role in hepatocellular carcinogenesis engendering systematic changes in the transcription of genes regulating DNA repair, proliferation, differentiation and metabolism.
PLOS ONE | 2012
Evin Ozen; Aysim Gozukizil; Esra Erdal; Aykut Üren; Donald P. Bottaro; Neşe Atabey
The Hepatocyte Growth Factor (HGF)/c-Met signaling pathway regulates hepatocyte proliferation, and pathway aberrations are implicated in the invasive and metastatic behaviors of hepatocellular carcinoma (HCC). In addition to c-Met, heparin acts as a co-receptor to modulate pathway activity. Recently, anti-metastatic and anti-cancer effects of heparin have been reported. However, the role of heparin in the regulation of HGF signaling remains controversial and the effects of heparin on HGF-induced biological responses during hepatocarcinogenesis is not yet defined. In this study we determined the effects of heparin on HGF-induced activities of HCC cells and the underlying molecular mechanisms. Here, we report for the first time that heparin inhibits HGF-induced adhesion, motility and invasion of HCC cells. In addition, heparin reduced HGF-induced activation of c-Met and MAPK in a dose-dependent manner, as well as decreased transcriptional activation and expression of Early growth response factor 1 (Egr1). HGF-induced MMP-2 and MMP-9 activation, and MT1-MMP expression, also were inhibited by heparin. Stable knockdown of Egr1 caused a significant decrease in HGF-induced invasion, as well as the activation and expression of MMPs. Parallel to these findings, the overexpression of Egr1 increased the invasiveness of HCC cells. Our results suggest that Egr1 activates HGF-induced cell invasion through the regulation of MMPs in HCC cells and heparin inhibits HGF-induced cellular invasion via the downregulation of Egr1. Therefore, heparin treatment might be a therapeutic approach to inhibit invasion and metastasis of HCC, especially for patients with active HGF/c-Met signaling.
Cancer Science | 2016
Zeynep Firtina Karagonlar; Doğukan Koç; Evin Iscan; Esra Erdal; Neşe Atabey
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and the third leading cause of cancer‐related deaths worldwide. Limitations in HCC treatment result due to poor prognosis and resistance against traditional radiotherapy and chemotherapies. The multikinase inhibitor sorafenib is the only FDA approved drug available for advanced HCC patients, and development of second‐line treatment options for patients who cannot tolerate or develop resistance to sorafenib is an urgent medical need. In this study, we established sorafenib‐resistant cells from Huh7 and Mahlavu cell lines by long‐term sorafenib exposure. Sorafenib‐resistant HCC cells acquired spindle‐shape morphology, upregulated mesenchymal markers, and showed significant increase in both migration and invasion abilities compared to their parental counterparts. Moreover, after long‐term sorafenib treatment, HCC cells showed induction of hepatocyte growth factor (HGF) synthesis and secretion along with increased levels of c‐Met kinase and its active phosphorylated form, indicating autocrine activation of HGF/c‐Met signaling. Importantly, the combined treatment of the resistant cells with c‐Met kinase inhibitor SU11274 and HGF neutralizing antibody significantly reversed the increased invasion ability of the cells. The combined treatment also significantly augmented sorafenib‐induced apoptosis, suggesting restoration of sorafenib sensitivity. These results describe, for the first time, compensatory upregulation of HGF synthesis leading to autocrine activation of HGF/c‐Met signaling as a novel cellular strategy in the acquisition of sorafenib resistance. Therefore, we suggest that combinatorial therapeutic strategies with HGF and c‐Met inhibitors comprise promising candidates for overcoming sorafenib resistance.
PLOS ONE | 2014
Peyda Korhan; Esra Erdal; Emine Kandemiş; Murat Çokaklı; Deniz Nart; Funda Yilmaz; Alp Can; Neşe Atabey
c-Met, the receptor for Hepatocyte Growth Factor (HGF), overexpressed and deregulated in Hepatocellular Carcinoma (HCC). Caveolin 1 (CAV1), a plasma membrane protein that modulates signal transduction molecules, is also overexpressed in HCC. The aim of this study was to investigate biological and clinical significance of co-expression and activation of c-Met and CAV1 in HCC. We showed that c-Met and CAV1 were co-localized in HCC cells and HGF treatment increased this association. HGF-triggered c-Met activation caused a concurrent rise in both phosphorylation and expression of CAV1. Ectopic expression of CAV1 accelerated c-Met signaling, resulted in enhanced migration, invasion, and branching-morphogenesis. Silencing of CAV1 downregulated c-Met signaling, and decreased migratory/invasive capability of cells and attenuated branching morphogenesis. In addition, activation and co-localization of c-Met and CAV1 were elevated during hepatocarcinogenesis. In conclusion reciprocal activating crosstalk between c-Met and CAV1 promoted oncogenic signaling of c-Met contributed to the initiation and progression of HCC.
Oncology Reports | 2014
İmge Kunter; Esra Erdal; Deniz Nart; Funda Yilmaz; Sedat Karademir; Ozgul Sagol; Neşe Atabey
Hepatocellular carcinoma (HCC) is the third most common cause of cancer-related mortality worldwide. Deregulation of the AKT signaling pathway has been found in HCC. However, the effect of AKT activation on the proliferation and apoptosis in HCC is not clear. Herein, expression of phosphorylated form of AKT (Ser 473) was investigated in HCC tumor (n=73), cirrhosis (n=17), normal liver (n=22) samples and in HCC cell lines (n=8). The results showed that expression of p-AKT was higher in tumor (53%) than in cirrhotic tissues (12%) while it was absent in normal liver (p<0.0001). p-AKT expression was also associated with number of tumor nodules and differentiation status (p<0.05). LY294002 induced cell cycle arrest at G0/G1 in SNU-449 and Mahlavu cells by decreasing expression of CDK2, CDK4, CycD1, CycD3, CycE, CycA and increasing expression of p21 and p27 as well; it also caused a decrease in the E2F1 transcriptional activity through declining phosphorylated Rb. LY294002 did not affect the basal level of apoptosis; however, it amplified cisplatin-induced apoptosis in SNU-449 cells. When the p-AKT level was decreased specifically after transfection with the DN-AKT plasmid, SNU-449 cells became more sensitive to cisplatin-induced apoptosis. HuH-7 cells with no basal p-AKT, were markedly affected by the treatment of doxorubicin. Thus, Akt signaling controls growth and chemical-induced apoptosis in HCC and p-AKT may be a potential target for therapeutic interventions in HCC patients.
Biomedicine & Pharmacotherapy | 2015
Cigdem Selli; Yasemin Erac; Buket Kosova; Esra Erdal; Metiner Tosun
PURPOSE Previously, we observed reciprocal changes in TRPC1 and TRPC6 expression levels in aging rat aorta and A7r5, rat embryonic vascular smooth muscle cells. Furthermore, downregulation of TRPC1 significantly elevated store-operated Ca(2+) entry suggesting the regulatory role of TRPC1 in A7r5 cells. Since TRPC6 upregulation shown to be associated with cell proliferation, the purpose of our study was to investigate the functional consequences of TRPC1 ion channel downregulation by RNA interference in Huh7 human hepatocellular carcinoma cell line. METHODS Huh7 cells used in quantitative gene and protein expression as well as in functional analyses. To determine mRNA and protein levels, quantitative real-time RT-PCR and western blot analyses were performed, respectively. In functional analyses, real-time changes in proliferation, migration and intracellular Ca(2+) levels were monitored. RESULTS In shTRPC1-transfected Huh7 cells, TRPC1 mRNA and protein levels significantly decreased whereas store-operated Ca(2+) entry significantly elevated. TRPC1-silencing suppressed cell proliferation without affecting cell migration in real-time cellular analyses. CONCLUSION These results suggest that TRPC1 may take part both in regulation of store-operated Ca(2+) entry and proliferation of hepatocellular carcinoma cells.
Journal of Cell Communication and Signaling | 2017
Evin Iscan; A.T. Güneş; Peyda Korhan; Yeliz Yılmaz; Esra Erdal; Neşe Atabey
The role of heparin as an anticoagulant is well defined; however, its role in tumorigenesis and tumor progression is not clear yet. Some studies have shown that anticoagulant treatment in cancer patients improve overall survival, however, recent clinical trials have not shown a survival benefit in cancer patients receiving heparin treatment. In our previous studies we have shown the inhibitory effects of heparin on Hepatocyte Growth Factor (HGF)-induced invasion and migration in hepatocellular carcinoma (HCC) cells. In this study, we showed the differential effects of heparin on the behaviors of HCC cells based on the presence or absence of HGF. In the absence of HGF, heparin activated HGF/c-Met signaling and promoted motility and invasion in HCC cells. Heparin treatment led to c-Met receptor dimerization and activated c-Met signaling in an HGF independent manner. Heparin-induced c-Met activation increased migration and invasion through ERK1/2, early growth response factor 1 (EGR1) and Matrix Metalloproteinases (MMP) axis. Interestingly, heparin modestly decreased the proliferation of HCC cells by inhibiting activatory phosphorylation of Akt. The inhibition of c-Met signaling reversed heparin-induced increase in motility and invasion and, proliferation inhibition. Our study provides a new perspective into the role of heparin on c-Met signaling in HCC.