Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Essa Yacoub is active.

Publication


Featured researches published by Essa Yacoub.


NeuroImage | 2013

The WU-Minn Human Connectome Project: An Overview

David C. Van Essen; Stephen M. Smith; M Deanna; Timothy E. J. Behrens; Essa Yacoub; Kamil Ugurbil

The Human Connectome Project consortium led by Washington University, University of Minnesota, and Oxford University is undertaking a systematic effort to map macroscopic human brain circuits and their relationship to behavior in a large population of healthy adults. This overview article focuses on progress made during the first half of the 5-year project in refining the methods for data acquisition and analysis. Preliminary analyses based on a finalized set of acquisition and preprocessing protocols demonstrate the exceptionally high quality of the data from each modality. The first quarterly release of imaging and behavioral data via the ConnectomeDB database demonstrates the commitment to making HCP datasets freely accessible. Altogether, the progress to date provides grounds for optimism that the HCP datasets and associated methods and software will become increasingly valuable resources for characterizing human brain connectivity and function, their relationship to behavior, and their heritability and genetic underpinnings.


PLOS ONE | 2010

Multiplexed Echo Planar Imaging for Sub-Second Whole Brain FMRI and Fast Diffusion Imaging

David A. Feinberg; Steen Moeller; Stephen M. Smith; Edward J. Auerbach; Sudhir Ramanna; Matt F. Glasser; Karla L. Miller; Kamil Ugurbil; Essa Yacoub

Echo planar imaging (EPI) is an MRI technique of particular value to neuroscience, with its use for virtually all functional MRI (fMRI) and diffusion imaging of fiber connections in the human brain. EPI generates a single 2D image in a fraction of a second; however, it requires 2–3 seconds to acquire multi-slice whole brain coverage for fMRI and even longer for diffusion imaging. Here we report on a large reduction in EPI whole brain scan time at 3 and 7 Tesla, without significantly sacrificing spatial resolution, and while gaining functional sensitivity. The multiplexed-EPI (M-EPI) pulse sequence combines two forms of multiplexing: temporal multiplexing (m) utilizing simultaneous echo refocused (SIR) EPI and spatial multiplexing (n) with multibanded RF pulses (MB) to achieve m×n images in an EPI echo train instead of the normal single image. This resulted in an unprecedented reduction in EPI scan time for whole brain fMRI performed at 3 Tesla, permitting TRs of 400 ms and 800 ms compared to a more conventional 2.5 sec TR, and 2–4 times reductions in scan time for HARDI imaging of neuronal fibertracks. The simultaneous SE refocusing of SIR imaging at 7 Tesla advantageously reduced SAR by using fewer RF refocusing pulses and by shifting fat signal out of the image plane so that fat suppression pulses were not required. In preliminary studies of resting state functional networks identified through independent component analysis, the 6-fold higher sampling rate increased the peak functional sensitivity by 60%. The novel M-EPI pulse sequence resulted in a significantly increased temporal resolution for whole brain fMRI, and as such, this new methodology can be used for studying non-stationarity in networks and generally for expanding and enriching the functional information.


NeuroImage | 2012

The Human Connectome Project: A data acquisition perspective

D. C. Van Essen; Kamil Ugurbil; Edward J. Auerbach; Timothy E. J. Behrens; Richard D. Bucholz; A. Chang; Liyong Chen; Maurizio Corbetta; Sandra W. Curtiss; S. Della Penna; David A. Feinberg; Matthew F. Glasser; Noam Harel; A. C. Heath; Linda J. Larson-Prior; Daniel S. Marcus; G. Michalareas; Steen Moeller; Robert Oostenveld; S.E. Petersen; Fred W. Prior; Bradley L. Schlaggar; Stephen M. Smith; Avi Snyder; Junqian Xu; Essa Yacoub

The Human Connectome Project (HCP) is an ambitious 5-year effort to characterize brain connectivity and function and their variability in healthy adults. This review summarizes the data acquisition plans being implemented by a consortium of HCP investigators who will study a population of 1200 subjects (twins and their non-twin siblings) using multiple imaging modalities along with extensive behavioral and genetic data. The imaging modalities will include diffusion imaging (dMRI), resting-state fMRI (R-fMRI), task-evoked fMRI (T-fMRI), T1- and T2-weighted MRI for structural and myelin mapping, plus combined magnetoencephalography and electroencephalography (MEG/EEG). Given the importance of obtaining the best possible data quality, we discuss the efforts underway during the first two years of the grant (Phase I) to refine and optimize many aspects of HCP data acquisition, including a new 7T scanner, a customized 3T scanner, and improved MR pulse sequences.


Magnetic Resonance in Medicine | 2010

Multiband multislice GE-EPI at 7 tesla, with 16-fold acceleration using partial parallel imaging with application to high spatial and temporal whole-brain fMRI†

Steen Moeller; Essa Yacoub; Cheryl A. Olman; Edward J. Auerbach; John Strupp; Noam Harel; Kâmil Uğurbil

Parallel imaging in the form of multiband radiofrequency excitation, together with reduced k‐space coverage in the phase‐encode direction, was applied to human gradient echo functional MRI at 7 T for increased volumetric coverage and concurrent high spatial and temporal resolution. Echo planar imaging with simultaneous acquisition of four coronal slices separated by 44mm and simultaneous 4‐fold phase‐encoding undersampling, resulting in 16‐fold acceleration and up to 16‐fold maximal aliasing, was investigated. Task/stimulus‐induced signal changes and temporal signal behavior under basal conditions were comparable for multiband and standard single‐band excitation and longer pulse repetition times. Robust, whole‐brain functional mapping at 7 T, with 2 × 2 × 2mm3 (pulse repetition time 1.25 sec) and 1 × 1 × 2mm3 (pulse repetition time 1.5 sec) resolutions, covering fields of view of 256 × 256 × 176mm3 and 192 × 172 × 176mm3, respectively, was demonstrated with current gradient performance. Magn Reson Med 63:1144–1153, 2010.


Nature | 2016

A multi-modal parcellation of human cerebral cortex

Matthew F. Glasser; Timothy S. Coalson; Emma C. Robinson; Carl D. Hacker; John W. Harwell; Essa Yacoub; Kamil Ugurbil; Jesper Andersson; Christian F. Beckmann; Mark Jenkinson; Stephen M. Smith; David C. Van Essen

Understanding the amazingly complex human cerebral cortex requires a map (or parcellation) of its major subdivisions, known as cortical areas. Making an accurate areal map has been a century-old objective in neuroscience. Using multi-modal magnetic resonance images from the Human Connectome Project (HCP) and an objective semi-automated neuroanatomical approach, we delineated 180 areas per hemisphere bounded by sharp changes in cortical architecture, function, connectivity, and/or topography in a precisely aligned group average of 210 healthy young adults. We characterized 97 new areas and 83 areas previously reported using post-mortem microscopy or other specialized study-specific approaches. To enable automated delineation and identification of these areas in new HCP subjects and in future studies, we trained a machine-learning classifier to recognize the multi-modal ‘fingerprint’ of each cortical area. This classifier detected the presence of 96.6% of the cortical areas in new subjects, replicated the group parcellation, and could correctly locate areas in individuals with atypical parcellations. The freely available parcellation and classifier will enable substantially improved neuroanatomical precision for studies of the structural and functional organization of human cerebral cortex and its variation across individuals and in development, aging, and disease.


Neuron | 2002

Sustained negative BOLD, blood flow and oxygen consumption response and its coupling to the positive response in the human brain

Amir Shmuel; Essa Yacoub; Josef Pfeuffer; Pierre-Francois Van de Moortele; Gregor Adriany; Xiaoping Hu; Kamil Ugurbil

Most fMRI studies are based on the detection of a positive BOLD response (PBR). Here, we demonstrate and characterize a robust sustained negative BOLD response (NBR) in the human occipital cortex, triggered by stimulating part of the visual field. The NBR was spatially adjacent to but segregated from the PBR. It depended on the stimulus and thus on the pattern of neuronal activity. The time courses of the NBR and PBR were similar, and their amplitudes covaried both with increasing stimulus duration and increasing stimulus contrast. The NBR was associated with reductions in blood flow and with decreases in oxygen consumption. Our findings support the contribution to the NBR of (1) a significant component of reduction in neuronal activity and (2) possibly a component of hemodynamic changes independent of the local changes in neuronal activity.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Temporally-independent functional modes of spontaneous brain activity

Stephen M. Smith; Karla L. Miller; Steen Moeller; Junqian Xu; Edward J. Auerbach; Mark W. Woolrich; Christian F. Beckmann; Mark Jenkinson; Jesper Andersson; Matthew F. Glasser; David C. Van Essen; David A. Feinberg; Essa Yacoub; Kamil Ugurbil

Resting-state functional magnetic resonance imaging has become a powerful tool for the study of functional networks in the brain. Even “at rest,” the brains different functional networks spontaneously fluctuate in their activity level; each networks spatial extent can therefore be mapped by finding temporal correlations between its different subregions. Current correlation-based approaches measure the average functional connectivity between regions, but this average is less meaningful for regions that are part of multiple networks; one ideally wants a network model that explicitly allows overlap, for example, allowing a regions activity pattern to reflect one networks activity some of the time, and another networks activity at other times. However, even those approaches that do allow overlap have often maximized mutual spatial independence, which may be suboptimal if distinct networks have significant overlap. In this work, we identify functionally distinct networks by virtue of their temporal independence, taking advantage of the additional temporal richness available via improvements in functional magnetic resonance imaging sampling rate. We identify multiple “temporal functional modes,” including several that subdivide the default-mode network (and the regions anticorrelated with it) into several functionally distinct, spatially overlapping, networks, each with its own pattern of correlations and anticorrelations. These functionally distinct modes of spontaneous brain activity are, in general, quite different from resting-state networks previously reported, and may have greater biological interpretability.


NeuroImage | 2013

Resting-state fMRI in the Human Connectome Project

Stephen M. Smith; Christian F. Beckmann; Jesper Andersson; Edward J. Auerbach; Janine D. Bijsterbosch; Gwenaëlle Douaud; Eugene P. Duff; David A. Feinberg; Ludovica Griffanti; Michael P. Harms; Michael Kelly; Timothy O. Laumann; Karla L. Miller; Steen Moeller; S.E. Petersen; Jonathan D. Power; Gholamreza Salimi-Khorshidi; Avi Snyder; An T. Vu; Mark W. Woolrich; Junqian Xu; Essa Yacoub; Kamil Ugurbil; D. C. Van Essen; Matthew F. Glasser

Resting-state functional magnetic resonance imaging (rfMRI) allows one to study functional connectivity in the brain by acquiring fMRI data while subjects lie inactive in the MRI scanner, and taking advantage of the fact that functionally related brain regions spontaneously co-activate. rfMRI is one of the two primary data modalities being acquired for the Human Connectome Project (the other being diffusion MRI). A key objective is to generate a detailed in vivo mapping of functional connectivity in a large cohort of healthy adults (over 1000 subjects), and to make these datasets freely available for use by the neuroimaging community. In each subject we acquire a total of 1h of whole-brain rfMRI data at 3 T, with a spatial resolution of 2×2×2 mm and a temporal resolution of 0.7s, capitalizing on recent developments in slice-accelerated echo-planar imaging. We will also scan a subset of the cohort at higher field strength and resolution. In this paper we outline the work behind, and rationale for, decisions taken regarding the rfMRI data acquisition protocol and pre-processing pipelines, and present some initial results showing data quality and example functional connectivity analyses.


Proceedings of the National Academy of Sciences of the United States of America | 2008

High-field fMRI unveils orientation columns in humans

Essa Yacoub; Noam Harel; Kâmil Uğurbil

Functional (f)MRI has revolutionized the field of human brain research. fMRI can noninvasively map the spatial architecture of brain function via localized increases in blood flow after sensory or cognitive stimulation. Recent advances in fMRI have led to enhanced sensitivity and spatial accuracy of the measured signals, indicating the possibility of detecting small neuronal ensembles that constitute fundamental computational units in the brain, such as cortical columns. Orientation columns in visual cortex are perhaps the best known example of such a functional organization in the brain. They cannot be discerned via anatomical characteristics, as with ocular dominance columns. Instead, the elucidation of their organization requires functional imaging methods. However, because of insufficient sensitivity, spatial accuracy, and image resolution of the available mapping techniques, thus far, they have not been detected in humans. Here, we demonstrate, by using high-field (7-T) fMRI, the existence and spatial features of orientation- selective columns in humans. Striking similarities were found with the known spatial features of these columns in monkeys. In addition, we found that a larger number of orientation columns are devoted to processing orientations around 90° (vertical stimuli with horizontal motion), whereas relatively similar fMRI signal changes were observed across any given active column. With the current proliferation of high-field MRI systems and constant evolution of fMRI techniques, this study heralds the exciting prospect of exploring unmapped and/or unknown columnar level functional organizations in the human brain.


Magnetic Resonance in Medicine | 2001

Imaging brain function in humans at 7 Tesla.

Essa Yacoub; Amir Shmuel; Josef Pfeuffer; Pierre-Francois Van de Moortele; Gregor Adriany; Peter Andersen; J. Thomas Vaughan; Hellmut Merkle; Kamil Ugurbil; Xiaoping Hu

This article describes experimental studies performed to demonstrate the feasibility of BOLD fMRI using echo‐planar imaging (EPI) at 7 T and to characterize the BOLD response in humans at this ultrahigh magnetic field. Visual stimulation studies were performed in normal subjects using high‐resolution multishot EPI sequences. Changes in R  *2 arising from visual stimulation were experimentally determined using fMRI measurements obtained at multiple echo times. The results obtained at 7 T were compared to those at 4 T. Experimental data indicate that fMRI can be reliably performed at 7 T and that at this field strength both the sensitivity and spatial specificity of the BOLD response are increased. This study suggests that ultrahigh field MR systems are advantageous for functional mapping in humans. Magn Reson Med 45:588–594, 2001.

Collaboration


Dive into the Essa Yacoub's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Noam Harel

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiaoping Hu

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Junqian Xu

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Amir Shmuel

Montreal Neurological Institute and Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge