Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Estefanía M. Martinis is active.

Publication


Featured researches published by Estefanía M. Martinis.


Analytica Chimica Acta | 2009

Room temperature ionic liquid-based microextraction for vanadium species separation and determination in water samples by electrothermal atomic absorption spectrometry.

Paula Berton; Estefanía M. Martinis; Luis D. Martinez; Rodolfo G. Wuilloud

A simple microextraction technique based on room temperature ionic liquids (RTILs) for trace V(IV) and V(V) species separation and preconcentration in water samples was developed in this work. Vanadium species microextraction was achieved with a minimal amount of the RTIL 1-butyl-3-methylimidazolium hexafluorophosphate ([C(4)mim][PF(6)]) as vanadium-2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (V-5-Br-PADAP) complex. The speciation analysis was performed based on a modern technique defined as temperature-controlled ionic liquid dispersive liquid phase microextraction (TILDLME). The level of V(IV) species was calculated by difference of total V and V(V) levels. Selectivity among V species was obtained with the use of 1,2-cyclohexanediaminetetraacetic acid (CDTA) as masking agent. Determination of V was developed by direct injection of the RTIL phase into the electrothermal atomic absorption spectrometer (ETAAS). A preconcentration factor of 40 was achieved with only 2 mL of sample. The limit of detection (LOD) obtained under optimum conditions was 4.9 ng L(-1) and the relative standard deviation for 10 replicate determinations at the 0.5 microg L(-1) V level was 4.3%, calculated at peak heights. A correlation coefficient of 0.9961 was achieved. The method was successfully applied for the speciation analysis of V in tap and river water samples.


Journal of Hazardous Materials | 2009

Trace mercury determination in drinking and natural water samples by room temperature ionic liquid based-preconcentration and flow injection-cold vapor atomic absorption spectrometry

Estefanía M. Martinis; Paula Berton; Roberto A. Olsina; Jorgelina C. Altamirano; Rodolfo G. Wuilloud

A liquid-liquid extraction procedure (L-L) based on room temperature ionic liquid (RTIL) was developed for the preconcentration and determination of mercury in different water samples. The analyte was quantitatively extracted with 1-butyl-3-methylimidazolium hexafluorophosphate ([C(4)mim][PF(6)]) under the form of Hg-2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (Hg-5-Br-PADAP) complex. A volume of 500 microl of 9.0 mol L(-1) hydrochloric acid was used to back-extract the analyte from the RTIL phase into an aqueous media prior to its analysis by flow injection-cold vapor atomic absorption spectrometry (FI-CV-AAS). A preconcentration factor of 36 was achieved upon preconcentration of 20 mL of sample. The limit of detection (LOD) obtained under the optimal conditions was 2.3ngL(-1) and the relative standard deviation (RSD) for 10 replicates at 1 microg L(-1) Hg(2+) was 2.8%, calculated with peaks height. The method was successfully applied to the determination of mercury in river, sea, mineral and tap water samples and a certified reference material (CRM).


Journal of Hazardous Materials | 2010

Development of an on-line temperature-assisted ionic liquid dispersive microextraction system for sensitive determination of vanadium in environmental and biological samples

Paula Berton; Estefanía M. Martinis; Rodolfo G. Wuilloud

An original flow injection (FI) system was developed for on-line microextraction of Vanadium (V) based on room temperature ionic liquid (RTIL). Vanadium was complexed with 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (5-Br-PADAP) at pH 4.0. A 40 microL-volume of 1-butyl-3-methylimidazolium hexafluorophosphate ([C(4)mim][PF(6)]) RTIL was mixed with 5 mL of sample solution containing the V-5-Br-PADAP complex. Then, a fully on-line temperature-assisted dispersion procedure was developed, followed by, analyte microextraction; and final on-line separation of the RTIL phase with a florisil-containing microcolumn. Vanadium was removed from the microcolumn with a 10% (v/v) nitric acid (in acetone) solution, and finally measured by electrothermal atomic absorption spectrometry (ETAAS). The detection limit achieved after preconcentration of 5 mL of sample solution, was 4.8 ng L(-1). The relative standard deviation (RSD) for 10 replicate determinations at 5 microg L(-1) of vanadium level was 4.1%, calculated from the obtained peak heights. The calibration graph was linear, with a correlation coefficient of 0.9982 at levels from the detection limits up to 15 microg L(-1). The method was successfully applied for the determination of vanadium in environmental and biological samples.


Talanta | 2011

Determination of inorganic selenium species in water and garlic samples with on-line ionic liquid dispersive microextraction and electrothermal atomic absorption spectrometry.

Estefanía M. Martinis; Leticia B. Escudero; Paula Berton; Romina P. Monasterio; María Flavia Filippini; Rodolfo G. Wuilloud

A non-chromatographic separation and preconcentration method for Se species determination based on the use of an on-line ionic liquid (IL) dispersive microextraction system coupled to electrothermal atomic absorption spectrometry (ETAAS) is proposed. Retention and separation of the IL phase was achieved with a Florisil(®)-packed microcolumn after dispersive liquid-liquid microextraction (DLLME) with tetradecyl(trihexyl)phosphonium chloride IL (CYPHOS(®) IL 101). Selenite [Se(IV)] species was selectively separated by forming Se-ammonium pyrrolidine dithiocarbamate (Se-APDC) complex followed by extraction with CYPHOS(®) IL 101. The methodology was highly selective towards Se(IV), while selenate [Se(VI)] was reduced and then indirectly determined. Several factors influencing the efficiency of the preconcentration technique, such as APDC concentration, sample volume, extractant phase volume, type of eluent, elution flow rate, etc., have been investigated in detail. The limit of detection (LOD) was 15 ng L(-1) and the relative standard deviation (RSD) for 10 replicates at 0.5 μg L(-1) Se concentration was 5.1%, calculated with peak heights. The calibration graph was linear and a correlation coefficient of 0.9993 was achieved. The method was successfully employed for Se speciation studies in garlic extracts and water samples.


Talanta | 2010

Tetradecyl(trihexyl)phosphonium chloride ionic liquid single-drop microextraction for electrothermal atomic absorption spectrometric determination of lead in water samples.

Estefanía M. Martinis; Paula Berton; Jorgelina C. Altamirano; Ullastiina Hakala; Rodolfo G. Wuilloud

A highly efficient single-drop microextraction (SDME) procedure using a low-cost room temperature ionic liquid (RTIL), i.e., tetradecyl(trihexyl)phosphonium chloride (CYPHOS IL 101), for Pb determination at trace levels in real water samples was developed. Lead was chelated with 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (5-Br-PADAP) reagent and extracted into a 4 microL microdrop of CYPHOS IL 101. The RTIL drop was directly injected into the graphite furnace of the electrothermal atomic absorption spectrometer (ETAAS). Under optimal microextraction conditions, a preconcentration factor of 32 was achieved with only 1.5 mL of sample resulting in a phase-volume ratio of 375. The limit of detection (LOD) obtained was 3.2 ng L(-1) and the relative standard deviation (RSD) for 10 replicates at 0.5 microg L(-1) Pb(2+) concentration level was 4.9%, calculated at peak heights. The calibration graph was linear from concentration levels near the detection limits up to at least 4.5 microg L(-1) with a correlation coefficient of 0.9996. The accuracy of the methodology was evaluated by analysis of a certified reference material (CRM). The method was successfully applied to the determination of Pb in tap, mineral, well and river water samples.


Analytica Chimica Acta | 2012

Selective determination of inorganic cobalt in nutritional supplements by ultrasound-assisted temperature-controlled ionic liquid dispersive liquid phase microextraction and electrothermal atomic absorption spectrometry.

Paula Berton; Estefanía M. Martinis; Luis D. Martinez; Rodolfo G. Wuilloud

In the present work, a simple and rapid analytical method based on application of ionic liquids (ILs) for inorganic Co(II) species (iCo) microextraction in a variety of nutrient supplements was developed. Inorganic Co was initially chelated with 1-nitroso-2-naphtol (1N2N) reagent followed by a modern technique named ultrasound-assisted temperature-controlled ionic liquid dispersive liquid phase microextraction (USA-TILDLME). The extraction was performed with 1-hexyl-3-methylimidazolium hexafluorophosphate [C(6)mim][PF(6)] with the aid of ultrasound to improve iCo recovery. Finally, the iCo-enriched IL phase was solubilized in methanol and directly injected into an electrothermal atomic absorption spectrometer (ETAAS). Several parameters that could influence iCo microextraction and detection were carefully studied. Since the main difficulty in these samples is caused by high concentrations of potential interfering ions, different approaches were evaluated to eliminate interferences. The limit of detection (LOD) was 5.4 ng L(-1), while the relative standard deviation (RSD) was 4.7% (at 0.5 μg L(-1) Co level and n=10), calculated from the peak height of absorbance signals. Selective microextraction of iCo species was achieved only by controlling the pH value during the procedure. The method was thus successfully applied for determination of iCo species in nutritional supplements.


Talanta | 2012

Dispersive liquid-liquid microextraction and preconcentration of thallium species in water samples by two ionic liquids applied as ion-pairing reagent and extractant phase.

Leticia B. Escudero; Paula Berton; Estefanía M. Martinis; Roberto A. Olsina; Rodolfo G. Wuilloud

In the present work, a simple and highly sensitive analytical methodology for determination of Tl(+) and Tl(3+) species, based on the use of modern and non-volatile solvents, such as ionic liquids (ILs), was developed. Initially, Tl(+) was complexed by iodide ion at pH 1 in diluted sulfuric acid solution. Then, tetradecyl(trihexyl)phosphonium chloride ionic liquid (CYPHOS(®) IL 101) was used as ion-pairing reagent and a dispersive liquid-liquid microextraction (DLLME) procedure was developed by dispersing 60 mg of 1-hexyl-3-methylimidazolium hexafluorophosphate [C(6) mim][PF(6)] with 500 μL of ethanol in the aqueous solution. After the microextraction procedure was finished, the final IL phase was solubilized in methanol and directly injected into the graphite furnace of an electrothermal atomic absorption spectrometer (ETAAS). An extraction efficiency of 77% and a sensitivity enhancement factor of 100 were obtained with only 5.00 mL of sample. The limit of detection (LOD) was 3.3 ng L(-1) Tl while the relative standard deviation (RSD) was 5.3% (at 0.4 μg L(-1) Tl and n=10), calculated from the peak height of absorbance signals. The method was finally applied to determine Tl species in tap and river water samples after separation of Tl(3+) species. To the best of our knowledge, this work reports the first application of ILs for Tl extraction and separation in the analytical field.


Talanta | 2009

On-line ionic liquid-based preconcentration system coupled to flame atomic absorption spectrometry for trace cadmium determination in plastic food packaging materials.

Estefanía M. Martinis; Roberto A. Olsina; Jorgelina C. Altamirano; Rodolfo G. Wuilloud

A novel on-line preconcentration method based on liquid-liquid (L-L) extraction with room temperature ionic liquids (RTILs) coupled to flame atomic absorption spectrometry (FAAS) was developed for cadmium determination in plastic food packaging materials. The methodology is based on the complexation of Cd with 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (5-Br-PADAP) reagent after sample digestion followed by extraction of the complex with the RTIL 1-butyl-3-methylimidazolium hexafluorophosphate ([C(4)mim][PF(6)]). The mixture was loaded into a flow injection analysis (FIA) manifold and the RTIL rich-phase was retained in a microcolumn filled with silica gel. The RTIL rich-phase was then eluted directly into FAAS. A enhancement factor of 35 was achieved with 20 mL of sample. The limit of detection (LOD), obtained as IUPAC recommendation, was 6 ng g(-1) and the relative standard deviation (R.S.D.) for 10 replicates at 10 microg L(-1) Cd concentration level was 3.9%, calculated at the peak heights. The calibration graph was linear and a correlation coefficient of 0.9998 was achieved. The accuracy of the method was evaluated by both a recovery study and comparison of results with direct determination by electrothermal atomic absorption spectrometry (ETAAS). The method was successfully applied for Cd determination in plastic food packaging materials and Cd concentrations found were in the range of 0.04-10.4 microg g(-1).


Food Chemistry | 2017

Inorganic selenium speciation analysis in Allium and Brassica vegetables by ionic liquid assisted liquid-liquid microextraction with multivariate optimization.

Alexander Castro Grijalba; Estefanía M. Martinis; Rodolfo G. Wuilloud

A highly sensitive vortex assisted liquid-liquid microextraction (VA-LLME) method was developed for inorganic Se [Se(IV) and Se(VI)] speciation analysis in Allium and Brassica vegetables. Trihexyl(tetradecyl)phosphonium decanoate phosphonium ionic liquid (IL) was applied for the extraction of Se(IV)-ammonium pyrrolidine dithiocarbamate (APDC) complex followed by Se determination with electrothermal atomic absorption spectrometry. A complete optimization of the graphite furnace temperature program was developed for accurate determination of Se in the IL-enriched extracts and multivariate statistical optimization was performed to define the conditions for the highest extraction efficiency. Significant factors of IL-VA-LLME method were sample volume, extraction pH, extraction time and APDC concentration. High extraction efficiency (90%), a 100-fold preconcentration factor and a detection limit of 5.0ng/L were achieved. The high sensitivity obtained with preconcentration and the non-chromatographic separation of inorganic Se species in complex matrix samples such as garlic, onion, leek, broccoli and cauliflower, are the main advantages of IL-VA-LLME.


Trends in Analytical Chemistry | 2010

Emerging ionic liquid-based techniques for total-metal and metal-speciation analysis

Estefanía M. Martinis; Paula Berton; Romina P. Monasterio; Rodolfo G. Wuilloud

Collaboration


Dive into the Estefanía M. Martinis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paula Berton

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar

Jorgelina C. Altamirano

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar

Roberto A. Olsina

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar

Alexander Castro Grijalba

Facultad de Ciencias Exactas y Naturales

View shared research outputs
Top Co-Authors

Avatar

Leticia B. Escudero

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar

Luis D. Martinez

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar

Romina P. Monasterio

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar

Gustavo E. Lascalea

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge