Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Estela Giménez is active.

Publication


Featured researches published by Estela Giménez.


PLOS ONE | 2010

Functional Analysis of the Arlequin Mutant Corroborates the Essential Role of the ARLEQUIN/TAGL1 Gene during Reproductive Development of Tomato

Estela Giménez; Benito Pineda; Juan Capel; María Teresa Antón; Alejandro Atarés; Fernando Pérez-Martín; Begoña García-Sogo; Trinidad Angosto; Vicente Moreno; Rafael Lozano

Reproductive development of higher plants comprises successive events of organ differentiation and growth which finally lead to the formation of a mature fruit. However, most of the genetic and molecular mechanisms which coordinate such developmental events are yet to be identified and characterized. Arlequin (Alq), a semi-dominant T-DNA tomato mutant showed developmental changes affecting flower and fruit ripening. Sepals were converted into fleshy organs which ripened as normal fruit organs and fruits displayed altered ripening features. Molecular characterization of the tagged gene demonstrated that it corresponded to the previously reported TOMATO AGAMOUS-LIKE 1 (TAGL1) gene, the tomato ortholog of SHATTERPROOF MADS-box genes of Arabidopsis thaliana, and that the Alq mutation promoted a gain-of-function phenotype caused by the ectopic expression of TAGL1. Ectopic overexpression of TAGL1 resulted in homeotic alterations affecting floral organ identity that were similar to but stronger than those observed in Alq mutant plants. Interestingly, TAGL1 RNAi plants yielded tomato fruits which were unable to ripen. They displayed a yellow-orange color and stiffness appearance which are in accordance with reduced lycopene and ethylene levels, respectively. Moreover, pericarp cells of TAGL1 RNAi fruits showed altered cellular and structural properties which correlated to both decreased expression of genes regulating cell division and lignin biosynthesis. Over-expression of TAGL1 is able to rescue the non-ripening phenotype of rin and nor mutants, which is mediated by the transcriptional activation of several ripening genes. Our results demonstrated that TAGL1 participates in the genetic control of flower and fruit development of tomato plants. Furthermore, gene silencing and over-expression experiments demonstrated that the fruit ripening process requires the regulatory activity of TAGL1. Therefore, TAGL1 could act as a linking factor connecting successive stages of reproductive development, from flower development to fruit maturation, allowing this complex process to be carried out successfully.


The International Journal of Developmental Biology | 2009

Genetic analysis of reproductive development in tomato.

Rafael Lozano; Estela Giménez; Beatriz Cara; Juan Capel; Trinidad Angosto

Besides being an important commercial crop, tomato (Solanum lycopersicum L.) constitutes a model species for the study of plant developmental processes. Current research tends to combine classic disciplines such as physiology and genetics with modern approaches coming from molecular biology and genomics with a view to elucidating the biological mechanisms underlying plant architecture, floral transition and development of flowers and fruits. Comparative and functional analyses of tomato regulatory genes such as LATERAL SUPPRESSOR (LS), SELF PRUNING (SP), SINGLE FLOWER TRUSS (SFT) and FALSIFLORA (FA) have revealed mechanisms involved in shoot development and flowering time which are conserved among Arabidopsis, tomato and other plant species. Furthermore, several regulatory genes encoding transcription factors have been characterized as responsible for singular features of vegetative and reproductive development of tomato. Thus, the sympodial growth habit seems to require a specific control of the developmental fate followed by shoot meristems. In this process, novel genetic and molecular interactions involving SP, SFT and FA genes would be essential. Also this latter, but mainly ANANTHA (AN) and COMPOUND INFLORESCENCE (S) have recently been found to regulate the inflorescence architecture of the tomato. Concerning fruit development, genetic and molecular analyses of new genes such as fw2.2, FASCIATED, OVATE and SUN have proved their contribution to the domestication process and most importantly, their function as key regulators of fruit size and shape variation. Tomato ripening is also being elucidated thanks to the characterization of regulatory genes such as RIPENING INHIBITOR (RIN), NON-RIPENING (NOR), TDR4 and COLORLESS NON-RIPENING (CNR), which have been found to control early stages of fruit development and maturation. At the same time, much research is dedicated to isolating the targets of the ripening regulators, as well as the key genes promoting the parthenocarpic development of tomato fruits. Hopefully, the ongoing sequencing project and the progress made by integrating several research fields will help to unravel the genetic and molecular pathways controlling tomato development.


Toxicological Sciences | 2013

Chlorpyrifos-, Diisopropylphosphorofluoridate- and Parathion-induced behavioral and oxidative stress effects: Are they mediated by analogous mechanisms of action?

Caridad López-Granero; Fernando Cañadas; Diana Cardona; Yingchun Yu; Estela Giménez; Rafael Lozano; Daiana Silva de Ávila; Michael Aschner; Fernando Sánchez-Santed

Exposure to organophosphates (OPs) can lead to cognitive deficits and oxidative damage. Little is known about the relationship between behavioral deficits and oxidative stress within the context of such exposures. Accordingly, the first experiment was carried out to address this issue. Male Wistar rats were administered 250 mg/kg of chlorpyrifos (CPF), 1.5 mg/kg of diisopropylphosphorofluoridate (DFP), or 15 mg/kg of parathion (PTN). Spatial learning in the water maze task was evaluated, and F(2)-isoprostanes (F(2)-IsoPs) and prostaglandin (PGE(2)) were analyzed in the hippocampus. A second experiment was designed to determine the degree of inhibition of brain acetylcholinesterase (AChE) activity, both the soluble and particulate forms of the enzyme, and to assess changes in AChE gene expression given evidence on alternative splicing of the gene in response to OP exposures. In addition, brain acylpeptide hydrolase (APH) activity was evaluated as a second target for OP-mediated effects. In both experiments, rats were sacrificed at various points to determine the time course of OPs toxicity in relation to their mechanism of action. Results from the first experiment suggest cognitive and emotional deficits after OPs exposure, which could be due to, at least in part, increased F(2)-IsoPs levels. Results from the second experiment revealed inhibition of brain AChE and APH activity at various time points post OP exposure. In addition, we observed increased brain read-through splice variant AChE (AChE-R) mRNA levels after 48 h PTN exposure. In conclusion, this study provides novel data on the relationship between cognitive alterations and oxidative stress, and the diverse mechanisms of action along a temporal axis in response to OP exposures in the rat.


Plant Physiology | 2015

Transcriptional Activity of the MADS Box ARLEQUIN/TOMATO AGAMOUS-LIKE1 Gene Is Required for Cuticle Development of Tomato Fruit

Estela Giménez; Eva Domínguez; Benito Pineda; Antonio Heredia; Vicente Moreno; Rafael Lozano; Trinidad Angosto

A ripening-related transcription factor regulates the cuticle development of tomato fruit as part of the reproductive developmental program. Fruit development and ripening entail key biological and agronomic events, which ensure the appropriate formation and dispersal of seeds and determine productivity and yield quality traits. The MADS box gene ARLEQUIN/TOMATO AGAMOUS-LIKE1 (hereafter referred to as TAGL1) was reported as a key regulator of tomato (Solanum lycopersicum) reproductive development, mainly involved in flower development, early fruit development, and ripening. It is shown here that silencing of the TAGL1 gene (RNA interference lines) promotes significant changes affecting cuticle development, mainly a reduction of thickness and stiffness, as well as a significant decrease in the content of cuticle components (cutin, waxes, polysaccharides, and phenolic compounds). Accordingly, overexpression of TAGL1 significantly increased the amount of cuticle and most of its components while rendering a mechanically weak cuticle. Expression of the genes involved in cuticle biosynthesis agreed with the biochemical and biomechanical features of cuticles isolated from transgenic fruits; it also indicated that TAGL1 participates in the transcriptional control of cuticle development mediating the biosynthesis of cuticle components. Furthermore, cell morphology and the arrangement of epidermal cell layers, on whose activity cuticle formation depends, were altered when TAGL1 was either silenced or constitutively expressed, indicating that this transcription factor regulates cuticle development, probably through the biosynthetic activity of epidermal cells. Our results also support cuticle development as an integrated event in the fruit expansion and ripening processes that characterize fleshy-fruited species such as tomato.


Toxicology | 2013

Chronic dietary exposure to chlorpyrifos causes behavioral impairments, low activity of brain membrane-bound acetylcholinesterase, and increased brain acetylcholinesterase-R mRNA

Caridad López-Granero; Diana Cardona; Estela Giménez; Rafael Lozano; José Barril; Fernando Sánchez-Santed; Fernando Cañadas

Chlorpyrifos (CPF) is an organophosphate (OP) insecticide that is metabolically activated to the highly toxic chlorpyrifos oxon. Dietary exposure is the main route of intoxication for non-occupational exposures. However, only limited behavioral effects of chronic dietary exposure have been investigated. Therefore, male Wistar rats were fed a dose of 5mg/kg/day of CPF for thirty-one weeks. Animals were evaluated in spatial learning and impulsivity tasks after 21 weeks of CPF dietary exposure and one week after exposure ended, respectively. In addition, the degree of inhibition of brain acetylcholinesterase (AChE) was evaluated for both the soluble and particulate forms of the enzyme, as well as AChE gene expression. Also, brain acylpeptide hydrolase (APH) was investigated as an alternative target for OP-mediated effects. All variables were evaluated at various time points in response to CPF diet and after exposure ended. Results from behavioral procedures suggest cognitive and emotional disorders. Moreover, low levels of activity representing membrane-bound oligomeric forms (tetramers) were also observed. In addition, increased brain AChE-R mRNA levels were detected after four weeks of CPF dietary exposure. However, no changes in levels of brain APH were observed among groups. In conclusion, our data point to a relationship between cognitive impairments and changes in AChE forms, specifically to a high inhibition of the particulate form and a modification of alternative splicing of mRNA during CPF dietary exposure.


Neurotoxicology | 2014

Comparative study on short- and long-term behavioral consequences of organophosphate exposure: relationship to AChE mRNA expression.

Caridad López-Granero; Diana Cardona; Estela Giménez; Rafael Lozano; José Barril; Michael Aschner; Fernando Sánchez-Santed; Fernando Cañadas

Organophosphates (OPs) affect behavior by inhibiting acetylcholinesterase (AChE). While the cognitive short-term effects may be directly attributed to this inhibition, the mechanisms that underlie OPs long-term cognitive effects remain controversial and poorly understood. Accordingly, two experiments were designed to assess the effects of OPs on cognition, and to ascertain whether both the short- and long-term effects of are AChE-dependent. A single subcutaneous dose of 250 mg/kg chlorpyrifos (CPF), 1.5mg/kg diisopropylphosphorofluoridate (DFP) or 15 mg/kg parathion (PTN) was administered to male Wistar rats. Spatial learning was evaluated 72 h or 23 weeks after exposure, and impulsive choice was tested at 10 and 30 weeks following OPs administration (experiment 1 and 2, respectively). Brain soluble and membrane-bound AChE activity, synaptic AChE-S mRNA, read-through AChE-R mRNA and brain acylpeptide hydrolase (APH) activity (as alternative non-cholinergic target) were analyzed upon completion of the behavioral testing (17 and 37 weeks after OPs exposure). Both short- and long-term CPF treatment caused statistically significant effects on spatial learning, while PTN treatment led only to statistically significant short-term effects. Neither CPF, DFP nor PTN affected the long-term impulsivity response. Long-term exposure to CPF and DFP significantly decreased AChE-S and AChE-R mRNA, while in the PTN treated group only AChE-S mRNA levels were decreased. However, after long-term OP exposure, soluble and membrane-bound AChE activity was indistinguishable from controls. Finally, no changes were noted in brain APH activity in response to OP treatment. Taken together, this study demonstrates long-term effects of OPs on AChE-S and AChE-R mRNA in the absence of changes in AChE soluble and membrane-bound activity. Thus, changes in AChE mRNA expression imply non-catalytic properties of the AChE enzyme.


Plant Molecular Biology | 2016

TOMATO AGAMOUS1 and ARLEQUIN/TOMATO AGAMOUS - LIKE1 MADS-box genes have redundant and divergent functions required for tomato reproductive development

Estela Giménez; Laura Castañeda; Benito Pineda; Irvin L. Pan; Vicente Moreno; Trinidad Angosto; Rafael Lozano

Within the tomato MADS-box gene family, TOMATO AGAMOUS1 (TAG1) and ARLEQUIN/TOMATO AGAMOUS LIKE1 (hereafter referred to as TAGL1) are, respectively, members of the euAG and PLE lineages of the AGAMOUS clade. They perform crucial functions specifying stamen and carpel development in the flower and controlling late fruit development. To gain insight into the roles of TAG1 and TAGL1 genes and to better understand their functional redundancy and diversification, we characterized single and double RNAi silencing lines of these genes and analyzed expression profiles of regulatory genes involved in reproductive development. Double RNAi lines did show cell abnormalities in stamens and carpels and produced extremely small fruit-like organs displaying some sepaloid features. Expression analyses indicated that TAG1 and TAGL1 act together to repress fourth whorl sepal development, most likely through the MACROCALYX gene. Results also proved that TAG1 and TAGL1 have diversified their functions in fruit development: while TAG1 controls placenta and seed formation, TAGL1 participates in cuticle development and lignin biosynthesis inhibition. It is noteworthy that both TAG1 and double RNAi plants lacked seed development due to abnormalities in pollen formation. This seedless phenotype was not associated with changes in the expression of B-class stamen identity genes Tomato MADS-box 6 and Tomato PISTILLATA observed in silencing lines, suggesting that other regulatory factors should participate in pollen formation. Taken together, results here reported support the idea that both redundant and divergent functions of TAG1 and TAGL1 genes are needed to control tomato reproductive development.


Scientific Reports | 2017

Albino T-DNA tomato mutant reveals a key function of 1-deoxy-D-xylulose-5-phosphate synthase (DXS1) in plant development and survival

Manuel García-Alcázar; Estela Giménez; Benito Pineda; Carmen Capel; Begoña García-Sogo; Sibilla Sánchez; Fernando J. Yuste-Lisbona; Trinidad Angosto; Juan Capel; Vicente Moreno; Rafael Lozano

Photosynthetic activity is indispensable for plant growth and survival and it depends on the synthesis of plastidial isoprenoids as chlorophylls and carotenoids. In the non-mevalonate pathway (MEP), the 1-deoxy-D-xylulose-5-phosphate synthase 1 (DXS1) enzyme has been postulated to catalyze the rate-limiting step in the formation of plastidial isoprenoids. In tomato, the function of DXS1 has only been studied in fruits, and hence its functional relevance during plant development remains unknown. Here we report the characterization of the wls-2297 tomato mutant, whose severe deficiency in chlorophylls and carotenoids promotes an albino phenotype. Additionally, growth of mutant seedlings was arrested without developing vegetative organs, which resulted in premature lethality. Gene cloning and silencing experiments revealed that the phenotype of wls-2297 mutant was caused by 38.6 kb-deletion promoted by a single T-DNA insertion affecting the DXS1 gene. This was corroborated by in vivo and molecular complementation assays, which allowed the rescue of mutant phenotype. Further characterization of tomato plants overexpressing DXS1 and comparative expression analysis indicate that DXS1 may play other important roles besides to that proposed during fruit carotenoid biosynthesis. Taken together, these results demonstrate that DXS1 is essentially required for the development and survival of tomato plants.


Plant Biotechnology Journal | 2017

A collection of enhancer trap insertional mutants for functional genomics in tomato

Fernando Pérez-Martín; Fernando J. Yuste-Lisbona; Benito Pineda; María Pilar Angarita-Díaz; Begoña García-Sogo; Teresa Antón; Sibilla Sánchez; Estela Giménez; Alejandro Atarés; Antonia Fernández-Lozano; Ana Ortíz-Atienza; Manuel García-Alcázar; Laura Castañeda; Rocío Fonseca; Carmen Capel; Geraldine Goergen; Jorge Rodrigo Sánchez; Jorge L. Quispe; Juan Capel; Trinidad Angosto; Vicente Moreno; Rafael Lozano

Summary With the completion of genome sequencing projects, the next challenge is to close the gap between gene annotation and gene functional assignment. Genomic tools to identify gene functions are based on the analysis of phenotypic variations between a wild type and its mutant; hence, mutant collections are a valuable resource. In this sense, T‐DNA collections allow for an easy and straightforward identification of the tagged gene, serving as the basis of both forward and reverse genetic strategies. This study reports on the phenotypic and molecular characterization of an enhancer trap T‐DNA collection in tomato (Solanum lycopersicum L.), which has been produced by Agrobacterium‐mediated transformation using a binary vector bearing a minimal promoter fused to the uidA reporter gene. Two genes have been isolated from different T‐DNA mutants, one of these genes codes for a UTP‐glucose‐1‐phosphate uridylyltransferase involved in programmed cell death and leaf development, which means a novel gene function reported in tomato. Together, our results support that enhancer trapping is a powerful tool to identify novel genes and regulatory elements in tomato and that this T‐DNA mutant collection represents a highly valuable resource for functional analyses in this fleshy‐fruited model species.


Frontiers in Plant Science | 2016

A Factor Linking Floral Organ Identity and Growth Revealed by Characterization of the Tomato Mutant unfinished flower development (ufd).

Sandra Poyatos-Pertíñez; Muriel Quinet; Ana Ortíz-Atienza; Fernando J. Yuste-Lisbona; Clara Pons; Estela Giménez; Trinidad Angosto; Antonio Granell; Juan Capel; Rafael Lozano

Floral organogenesis requires coordinated interactions between genes specifying floral organ identity and those regulating growth and size of developing floral organs. With the aim to isolate regulatory genes linking both developmental processes (i.e., floral organ identity and growth) in the tomato model species, a novel mutant altered in the formation of floral organs was further characterized. Under normal growth conditions, floral organ primordia of mutant plants were correctly initiated, however, they were unable to complete their development impeding the formation of mature and fertile flowers. Thus, the growth of floral buds was blocked at an early stage of development; therefore, we named this mutant as unfinished flower development (ufd). Genetic analysis performed in a segregating population of 543 plants showed that the abnormal phenotype was controlled by a single recessive mutation. Global gene expression analysis confirmed that several MADS-box genes regulating floral identity as well as other genes participating in cell division and different hormonal pathways were affected in their expression patterns in ufd mutant plants. Moreover, ufd mutant inflorescences showed higher hormone contents, particularly ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) and strigol compared to wild type. Such results indicate that UFD may have a key function as positive regulator of the development of floral primordia once they have been initiated in the four floral whorls. This function should be performed by affecting the expression of floral organ identity and growth genes, together with hormonal signaling pathways.

Collaboration


Dive into the Estela Giménez's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Benito Pineda

Polytechnic University of Valencia

View shared research outputs
Top Co-Authors

Avatar

Vicente Moreno

Polytechnic University of Valencia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Begoña García-Sogo

Polytechnic University of Valencia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge