Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Estelle Appert is active.

Publication


Featured researches published by Estelle Appert.


ACS Nano | 2014

Selective Area Growth of Well-Ordered ZnO Nanowire Arrays with Controllable Polarity

Vincent Consonni; Eirini Sarigiannidou; Estelle Appert; Amandine Bocheux; Sophie Guillemin; Fabrice Donatini; Ivan-Christophe Robin; J. Kioseoglou; Florence Robaut

Controlling the polarity of ZnO nanowires in addition to the uniformity of their structural morphology in terms of position, vertical alignment, length, diameter, and period is still a technological and fundamental challenge for real-world device integration. In order to tackle this issue, we specifically combine the selective area growth on prepatterned polar c-plane ZnO single crystals using electron-beam lithography, with the chemical bath deposition. The formation of ZnO nanowires with a highly controlled structural morphology and a high optical quality is demonstrated over large surface areas on both polar c-plane ZnO single crystals. Importantly, the polarity of ZnO nanowires can be switched from O- to Zn-polar, depending on the polarity of prepatterned ZnO single crystals. This indicates that no fundamental limitations prevent ZnO nanowires from being O- or Zn-polar. In contrast to their catalyst-free growth by vapor-phase deposition techniques, the possibility to control the polarity of ZnO nanowires grown in solution is remarkable, further showing the strong interest in the chemical bath deposition and hydrothermal techniques. The single O- and Zn-polar ZnO nanowires additionally exhibit distinctive cathodoluminescence spectra. To a broader extent, these findings open the way to the ultimate fabrication of well-organized heterostructures made from ZnO nanowires, which can act as building blocks in a large number of electronic, optoelectronic, and photovoltaic devices.


ACS Applied Materials & Interfaces | 2015

Physical Properties of Annealed ZnO Nanowire/CuSCN Heterojunctions for Self-Powered UV Photodetectors

Jérôme Garnier; Romain Parize; Estelle Appert; O. Chaix-Pluchery; Anne Kaminski-Cachopo; Vincent Consonni

The low-cost fabrication of ZnO nanowire/CuSCN heterojunctions is demonstrated by combining chemical bath deposition with impregnation techniques. The ZnO nanowire arrays are completely filled by the CuSCN layer from their bottoms to their tops. The CuSCN layer is formed of columnar grains that are strongly oriented along the [003] direction owing to the polymeric form of the β-rhombohedral crystalline phase. Importantly, an annealing step is found essential in a fairly narrow range of low temperatures, not only for outgassing the solvent from the CuSCN layer, but also for reducing the density of interfacial defects. The resulting electrical properties of annealed ZnO nanowire/CuSCN heterojunctions are strongly improved: a maximum rectification ratio of 2644 at ±2 V is achieved following annealing at 150 °C under air atmosphere, which is related to a strong decrease in the reverse current density. Interestingly, the corresponding self-powered UV photodetectors exhibit a responsivity of 0.02 A/W at zero bias and at 370 nm with a UV-to-visible (370-500 nm) rejection ratio of 100 under an irradiance of 100 mW/cm(2). The UV selectivity at 370 nm can also be readily modulated by tuning the length of ZnO nanowires. Eventually, a significant photovoltaic effect is revealed for this type of heterojunctions, leading to an open circuit voltage of 37 mV and a short circuit current density of 51 μA/cm(2), which may be useful for the self-powering of the complete device. These findings show the underlying physical mechanisms at work in ZnO nanowire/CuSCN heterojunctions and reveal their high potential as self-powered UV photodetectors.


Comptes Rendus Physique | 2002

Organic nanocrystals grown in sol–gel matrices: a new type of hybrid material for optics

Julien Zaccaro; Nathalie Sanz; Estelle Appert; Patrice L. Baldeck; Alain Ibanez

We have engineered new hybrid organic–inorganic materials through a simple and generic preparation of stable organic nanocrystals grown in gel–glass matrices. This process is based on the confined nucleation and growth of dyes in the pores of dense gels. For bulk samples, narrow size distributions of particles are obtained between 10 and 20 nm in diameter. We have extended this method to the preparation of organic nanocrystals embedded in sol–gel thin films by spin-coating. For all these nanocomposite samples, we have significantly increased the stability of the dye and obtained promising linear and nonlinear optical properties. To cite this article: J. Zaccaro et al., C. R. Physique 3 (2002) 463–478.


SOLID STATE PHYSICS: PROCEEDINGS OF THE 57TH DAE SOLID STATE PHYSICS SYMPOSIUM 2012 | 2013

Fluorine doped tin oxide (FTO) thin film as transparent conductive oxide (TCO) for photovoltaic applications

Anusha Muthukumar; G. Rey; Gael Giusti; Vincent Consonni; Estelle Appert; H. Roussel; Arivuoli Dakshnamoorthy; Daniel Bellet

Textured FTO thin films were deposited on corning glass substrates at 420°C by ultrasonic spray pyrolysis method. The electrical, optical and structural properties of the prepared functional FTO thin films were investigated. Homogeneous textured columnar grain morphology was observed through FESEM. As prepared thin films exhibits polycrystalline cassiterite structure with preferred orientation along (200). FTO is a promising TCO as front electrodes of thin film solar cells because of their good electrical properties (4.3×10−4ω.cm) combined with high transmission properties (86%).


Nanoscale Research Letters | 2014

Improvement of the physical properties of ZnO/CdTe core-shell nanowire arrays by CdCl2 heat treatment for solar cells

Vincent Consonni; Sébastien Renet; Jérôme Garnier; Patrice Gergaud; Lluís Artús; Jérôme Michallon; Laetitia Rapenne; Estelle Appert; Anne Kaminski-Cachopo

CdTe is an important compound semiconductor for solar cells, and its use in nanowire-based heterostructures may become a critical requirement, owing to the potential scarcity of tellurium. The effects of the CdCl2 heat treatment are investigated on the physical properties of vertically aligned ZnO/CdTe core-shell nanowire arrays grown by combining chemical bath deposition with close space sublimation. It is found that recrystallization phenomena are induced by the CdCl2 heat treatment in the CdTe shell composed of nanograins: its crystallinity is improved while grain growth and texture randomization occur. The presence of a tellurium crystalline phase that may decorate grain boundaries is also revealed. The CdCl2 heat treatment further favors the chlorine doping of the CdTe shell with the formation of chlorine A-centers and can result in the passivation of grain boundaries. The absorption properties of ZnO/CdTe core-shell nanowire arrays are highly efficient, and more than 80% of the incident light can be absorbed in the spectral range of the solar irradiance. The resulting photovoltaic properties of solar cells made from ZnO/CdTe core-shell nanowire arrays covered with CuSCN/Au back-side contact are also improved after the CdCl2 heat treatment. However, recombination and trap phenomena are expected to operate, and the collection of the holes that are mainly photo-generated in the CdTe shell from the CuSCN/Au back-side contact is presumably identified as the main critical point in these solar cells.


Nanoscale | 2015

Spontaneous shape transition of thin films into ZnO nanowires with high structural and optical quality.

Sophie Guillemin; Eirini Sarigiannidou; Estelle Appert; Fabrice Donatini; Gilles Renou; G. Bremond; Vincent Consonni

ZnO nanowires are usually formed by physical and chemical deposition techniques following the bottom-up approach consisting in supplying the reactants on a nucleation surface heated at a given temperature. We demonstrate an original alternative approach for the formation of ZnO nanowire arrays with high structural and optical quality, which is based on the spontaneous transformation of a ZnO thin film deposited by sol-gel process following a simple annealing. The development of these ZnO nanowires occurs through successive shape transitions, including the intermediate formation of pyramid-shaped islands. Their nucleation under near-equilibrium conditions is expected to be governed by thermodynamic considerations via the total free energy minimization related to the nanowire shape. It is further strongly assisted by the drastic reordering of the matter and by recrystallization phenomena through the massive transport of zinc and oxygen atoms towards the localized growth areas. The spontaneous shape transition process thus combines the easiness and low-cost of sol-gel process and simple annealing with the assets of the vapor phase deposition techniques. These findings cast a light on the fundamental mechanisms driving the spontaneous formation of ZnO nanowires and, importantly, reveal the great technological potential of the spontaneous shape transition process as a promising alternative approach to the more usual bottom-up approach.


Langmuir | 2017

Polarity-Dependent Growth Rates of Selective Area Grown ZnO Nanorods by Chemical Bath Deposition

Thomas Cossuet; Estelle Appert; Jean-Luc Thomassin; Vincent Consonni

Polarity is known to affect the growth and properties of ZnO single crystals and epitaxial films, but its effects are mostly unknown in ZnO nanorods. To leave polarity as the only varying parameter, ZnO nanorods are grown by chemical bath deposition under identical conditions and during the same run on O- and Zn-polar ZnO single crystals patterned by electron beam lithography with the same pattern consisting of 15 different domains. The resulting well-ordered O- and Zn-polar ZnO nanorod arrays with high structural uniformity are formed on all the domains. The comparison of their typical dimensions unambiguously reveals that Zn-polar ZnO nanorods have much higher growth rates than O-polar ZnO nanorods for all the hole diameter and period combinations. The distinct growth rates are explained in the framework of the surface reaction-/diffusive transport-limited elongation regime analysis, which yields a much larger surface reaction rate constant for Zn-polar ZnO nanorods. The origin of the difference is attributed to polarity-dependent dangling bond configurations at the top polar c-faces of ZnO nanorods, which may further be affected by polarity-dependent interactions with the ionic species in aqueous solution. These findings show the relevance of considering polarity as an important quantity in ZnO nanorods.


Nanotechnology | 2018

Well-ordered ZnO nanowires with controllable inclination on semipolar ZnO surfaces by chemical bath deposition

Thomas Cossuet; H. Roussel; J.-M. Chauveau; O. Chaix-Pluchery; Jean-Luc Thomassin; Estelle Appert; Vincent Consonni

Controlling the formation of ZnO nanowire (NW) arrays on a wide variety of substrates is crucial for their efficient integration into nanoscale devices. While their nucleation and growth by chemical bath deposition (CBD) have intensively been investigated on non-polar and polar c-plane ZnO surfaces, their formation on alternatively oriented ZnO surfaces has not been addressed yet. In this work, the standard CBD technique of ZnO is investigated on [Formula: see text] and [Formula: see text] semipolar ZnO single crystal surfaces. A uniform nanostructured layer consisting of tilted ZnO NWs is formed on the [Formula: see text] surface while elongated nanostructures are coalesced into a two-dimensional compact layer on the [Formula: see text] surface. By further combining the CBD with selective area growth (SAG) using electron beam-assisted lithography, highly tilted well-ordered ZnO NWs with high structural uniformity are grown on the [Formula: see text] patterned surface. The structural analysis reveals that ZnO NWs are homoepitaxially grown along the polar c-axis. The occurrence of quasi-transverse and -longitudinal optical phonon modes in Raman spectra is detected and their origin and position are explained in the framework of the Loudons model. These results highlight the possibility to form ZnO NWs on original semipolar ZnO surfaces. It also opens the way for comprehensively understanding the nucleation and growth of ZnO NW arrays on poorly and highly textured polycrystalline ZnO seed layers composed of nanoparticles with a wide range of non-polar, semipolar, and polar plane orientations. Eventually, the possibility to tune both the inclination and dimensions of well-ordered ZnO NW arrays by using SAG on semipolar surfaces is noteworthy for photonic and optoelectronic nanoscale devices.


CrystEngComm | 2018

Synthesis and properties of ZnO/TiO2/Sb2S3 core–shell nanowire heterostructures using the SILAR technique

Romain Parize; Thomas Cossuet; Estelle Appert; O. Chaix-Pluchery; H. Roussel; Laetitia Rapenne; Vincent Consonni

The development of the successive ionic layer adsorption and reaction (SILAR) technique is of high interest for the integration of a semiconducting layer onto high aspect ratio nanoscale structures. We show the deposition of an Sb2S3 shell by SILAR on top of ZnO/TiO2 core–shell nanowire heterostructures, using antimony chloride and sodium sulfide as cationic and anionic precursors, respectively. The conformal anatase-TiO2 shell deposited by atomic layer deposition acts as a protective layer to chemically stabilize these heterostructures with a type II band alignment in the cationic precursor solution. The resulting Sb2S3 shell is composed of uniformly distributed Sb2S3 clusters crystallized at a relatively low temperature of 250 °C from the bottom to the top of ZnO nanowires. It is, further, of high purity, where only a very minor senarmontite-Sb2O3 phase is detected by Raman spectroscopy, and exhibits a relevant band gap energy of 1.74 eV derived from a Tauc plot in the framework of the double pass analysis. These findings reveal the high potential of the SILAR technique to form ZnO core–shell nanowire heterostructures with high uniformity at moderate temperature as well as its advantages over the most widely used chemical bath deposition technique.


ACS Omega | 2018

Effects of Polyethylenimine and Its Molecular Weight on the Chemical Bath Deposition of ZnO Nanowires

Romain Parize; Jérôme Garnier; Estelle Appert; O. Chaix-Pluchery; Vincent Consonni

The addition of polyethylenimine (PEI) in the standard chemical bath deposition (CBD) of ZnO nanowires has received an increasing interest for monitoring their aspect ratio, but the physicochemical processes at work are still under debate. To address this issue, the effects of PEI are disentangled from the effects of ammonia and investigated over a broad range of molecular weight (i.e., chain length) and concentration, varying from 1300 to 750 000 and from 1.5 to 10 mM, respectively. It is shown that the addition of PEI strongly favors the elongation of ZnO nanowires by suppressing the homogeneous growth at the benefit of the heterogeneous growth as well as by changing the supersaturation level through a pH modification. PEI is further found to inhibit the development of the sidewalls of ZnO nanowires by adsorbing on their nonpolar m-planes, as supported by Raman scattering analysis. The inhibition proceeds even in the low pH range, which somehow rules out the present involvement of electrostatic interactions as the dominant mechanism for the adsorption. Furthermore, it is revealed that PEI drastically affects the nucleation process of ZnO nanowires on the polycrystalline ZnO seed layer by presumably adsorbing on the nanoparticles oriented with the m-planes parallel to the surface, reducing in turn their nucleation rate as well as inducing a significant vertical misalignment. These findings, specifically showing the effects of the PEI molecular weight and concentration, cast light onto its multiple roles in the CBD of ZnO nanowires.

Collaboration


Dive into the Estelle Appert's collaboration.

Top Co-Authors

Avatar

Vincent Consonni

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

O. Chaix-Pluchery

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Laetitia Rapenne

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Romain Parize

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Thomas Cossuet

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

H. Roussel

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

C. Jimenez

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Jérôme Garnier

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

David Muñoz-Rojas

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Gilles Renou

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge