Estelle Houde
Maine Medical Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Estelle Houde.
Blood | 2008
Pradeep Sathyanarayana; Arvind Dev; Jing Fang; Estelle Houde; Olga Bogacheva; Oleg Bogachev; Madhu P. Menon; Sarah K. Browne; Anamika Pradeep; Christine Emerson; Don M. Wojchowski
EPO functions primarily as an erythroblast survival factor, and its antiapoptotic actions have been proposed to involve predominantly PI3-kinase and BCL-X pathways. Presently, the nature of EPO-regulated survival genes has been investigated through transcriptome analyses of highly responsive, primary bone marrow erythroblasts. Two proapoptotic factors, Bim and FoxO3a, were rapidly repressed not only via the wild-type EPOR, but also by PY-deficient knocked-in EPOR alleles. In parallel, Pim1 and Pim3 kinases and Irs2 were induced. For this survival gene set, induction failed via a PY-null EPOR-HM allele, but was restored upon reconstitution of a PY343 STAT5-binding site within a related EPOR-H allele. Notably, EPOR-HM supports erythropoiesis at steady state but not during anemia, while EPOR-H exhibits near wild-type EPOR activities. EPOR-H and the wild-type EPOR (but not EPOR-HM) also markedly stimulated the expression of Trb3 pseudokinase, and intracellular serpin, Serpina-3G. For SERPINA-3G and TRB3, ectopic expression in EPO-dependent progenitors furthermore significantly inhibited apoptosis due to cytokine withdrawal. BCL-XL and BCL2 also were studied, but in highly responsive Kit(pos)CD71(high)Ter119(neg) erythroblasts, neither was EPO modulated. EPOR survival circuits therefore include the repression of Bim plus FoxO3a, and EPOR/PY343/STAT5-dependent stimulation of Pim1, Pim3, Irs2 plus Serpina-3G, and Trb3 as new antiapoptotic effectors.
Blood | 2009
Pradeep Sathyanarayana; Estelle Houde; Deborah Marshall; Amy Volk; Dorie Makropoulos; Christine Emerson; Anamika Pradeep; Peter J. Bugelski; Don M. Wojchowski
Anemia as associated with numerous clinical conditions can be debilitating, but frequently can be treated via administration of epoetin-alfa, darbepoietin-alfa, or methoxy-PEG epoetin-beta. Despite the complexity of EPO-EPO receptor interactions, the development of interesting EPO mimetic peptides (EMPs) also has been possible. CNTO 530 is one such novel MIMETIBODY Fc-domain dimeric EMP fusion protein. In a mouse model, single-dose CNTO 530 (unlike epoetin-alfa or darbepoietin-alfa) bolstered red cell production for up to 1 month. In 5-fluorouracil and carboplatin-paclitaxel models, CNTO 530 also protected against anemia with unique efficiency. These actions were not fully accounted for by half-life estimates, and CNTO 530 signaling events therefore were studied. Within primary bone marrow erythroblasts, kinetics of STAT5, ERK, and AKT activation were similar for CNTO 530 and epoetin-alfa. p70S6K activation by CNTO 530, however, was selectively sustained. In vivo, CNTO 530 uniquely stimulated the enhanced formation of PODXL(high)CD71(high) (pro)erythroblasts at frequencies multifold above epoetin-alfa or darbepoietin-alfa. CNTO 530 moreover supported the sustained expansion of a bone marrow-resident Kit(neg)CD71(high)Ter119(neg) progenitor pool. Based on these distinct erythropoietic and EPOR signaling properties, CNTO 530 holds excellent promise as a new EPO mimetic.
Journal of Biological Chemistry | 2008
Olga Bogacheva; Oleg Bogachev; Madhu P. Menon; Arvind Dev; Estelle Houde; Elizabeth I. Valoret; Haydn M. Prosser; Caretha L. Creasy; Susan Pickering; Evelyn Grau; Kim Rance; George P. Livi; Vinit Karur; Connie L. Erickson-Miller; Don M. Wojchowski
During anemia erythropoiesis is bolstered by several factors including KIT ligand, oncostatin-M, glucocorticoids, and erythropoietin. Less is understood concerning factors that limit this process. Experiments performed using dual-specificity tyrosine-regulated kinase-3 (DYRK3) knock-out and transgenic mice reveal that erythropoiesis is attenuated selectively during anemia. DYRK3 is restricted to erythroid progenitor cells and testes. DYRK3-/- mice exhibited essentially normal hematological profiles at steady state and reproduced normally. In response to hemolytic anemia, however, reticulocyte production increased severalfold due to DYRK3 deficiency. During 5-fluorouracil-induced anemia, both reticulocyte and red cell formation in DYRK3-/- mice were elevated. In short term transplant experiments, DYRK3-/- progenitors also supported enhanced erythroblast formation, and erythropoietic advantages due to DYRK3-deficiency also were observed in 5-fluorouracil-treated mice expressing a compromised erythropoietin receptor EPOR-HM allele. As analyzed ex vivo, DYRK3-/- erythroblasts exhibited enhanced CD71posTer119pos cell formation and 3HdT incorporation. Transgenic pA2gata1-DYRK3 mice, in contrast, produced fewer reticulocytes during hemolytic anemia, and pA2gata1-DYRK3 progenitors were compromised in late pro-erythroblast formation ex vivo. Finally, as studied in erythroid K562 cells, DYRK3 proved to effectively inhibit NFAT (nuclear factor of activated T cells) transcriptional response pathways and to co-immunoprecipitate with NFATc3. Findings indicate that DYRK3 attenuates (and possibly apportions) red cell production selectively during anemia.
Blood | 2008
Jing Fang; Madhu P. Menon; Diya Zhang; Bruce E. Torbett; Leif Oxburgh; Mario P. Tschan; Estelle Houde; Don M. Wojchowski
The adult erythron is maintained via dynamic modulation of erythroblast survival potentials. Toward identifying novel regulators of this process, murine splenic erythroblasts at 3 developmental stages were prepared, purified and profiled. Stage-to-stage modulated genes were then functionally categorized, with a focus on apoptotic factors. In parallel with BCL-X and NIX, death-associated protein kinase-2 (DAPK2) was substantially up-modulated during late erythropoiesis. Among hematopoietic lineages, DAPK2 was expressed predominantly in erythroid cells. In a Gata1-IE3.9int-DAPK2 transgenic mouse model, effects on steady-state reticulocyte and red blood cell (RBC) levels were limited. During hemolytic anemia, however, erythropoiesis was markedly deficient. Ex vivo ana-lyses revealed heightened apoptosis due to DAPK2 at a Kit(-)CD71(high)Ter119(-) stage, together with a subsequent multifold defect in late-stage Kit(-)CD71(high)Ter119(+) cell formation. In UT7epo cells, siRNA knock-down of DAPK2 enhanced survival due to cytokine withdrawal, and DAPK2s phosphorylation and kinase activity also were erythropoietin (EPO)-modulated. DAPK2 therefore comprises a new candidate attenuator of stress erythropoiesis.
Blood | 2007
Jing Fang; Madhu P. Menon; William Kapelle; Olga Bogacheva; Oleg Bogachev; Estelle Houde; Sarah K. Browne; Pradeep Sathyanarayana; Don M. Wojchowski
Blood | 2007
Pradeep Sathyanarayana; Madhu P. Menon; Olga Bogacheva; Oleg Bogachev; Knut Niss; William Kapelle; Estelle Houde; Jing Fang; Don M. Wojchowski
Blood Cells Molecules and Diseases | 2006
Don M. Wojchowski; Madhu P. Menon; Pradeep Sathyanarayana; Jing Fang; Vinit Karur; Estelle Houde; William Kapelle; Oleg Bogachev
Archive | 2016
Pradeep Sathyanarayana; Estelle Houde; Deborah Marshall; Amy Volk; Dorie Makropoulos; Christine Emerson; Anamika Pradeep; Peter J. Bugelski; Don M. Wojchowski
Archive | 2013
Pradeep Sathyanarayana; Madhu P. Menon; William Kapelle; Olga Bogacheva; Oleg Bogachev; Estelle Houde
Archive | 2010
Estelle Houde; Jing Fang; Don M. Wojchowski; Pradeep Sathyanarayana; Madhu P. Menon; Olga Bogacheva; Oleg Bogachev; Knut Niss