Estelle Lerceteau-Köhler
Swedish University of Agricultural Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Estelle Lerceteau-Köhler.
Genetics | 2008
Mathieu Rousseau-Gueutin; Estelle Lerceteau-Köhler; Laure Barrot; Daniel J. Sargent; Amparo Monfort; D. W. Simpson; Pere Arús; G. Guérin; Béatrice Denoyes-Rothan
Macrosynteny and colinearity between Fragaria (strawberry) species showing extreme levels of ploidy have been studied through comparative genetic mapping between the octoploid cultivated strawberry (F. ×ananassa) and its diploid relatives. A comprehensive map of the octoploid strawberry, in which almost all linkage groups are ranged into the seven expected homoeologous groups was obtained, thus providing the first reference map for the octoploid Fragaria. High levels of conserved macrosynteny and colinearity were observed between homo(eo)logous linkage groups and between the octoploid homoeologous groups and their corresponding diploid linkage groups. These results reveal that the polyploidization events that took place along the evolution of the Fragaria genus and the more recent juxtaposition of two octoploid strawberry genomes in the cultivated strawberry did not trigger any major chromosomal rearrangements in genomes involved in F. ×ananassa. They further suggest the existence of a close relationship between the diploid Fragaria genomes. In addition, despite the possible existence of residual levels of polysomic segregation suggested by the observation of large linkage groups in coupling phase only, the prevalence of linkage groups in coupling/repulsion phase clearly demonstrates that the meiotic behavior is mainly disomic in the cultivated strawberry.
Functional Plant Biology | 2004
Annick Moing; Mickaël Maucourt; Christel Renaud; Monique Gaudillère; Renaud Brouquisse; Bénédicte Lebouteiller; Aurélie Gousset-Dupont; Jean Vidal; David Granot; Béatrice Denoyes-Rothan; Estelle Lerceteau-Köhler; Dominique Rolin
Metabolic profiling by 1-dimensional (1-D) 1H-nuclear magnetic resonance (NMR) was tested for absolute quantification of soluble sugars, organic acids, amino acids and some secondary metabolites in fruit, roots and leaves. The metabolite responsible for each peak of the 1H-NMR spectra was identified from spectra of pure compounds. Peak identity was confirmed by the addition of a small amount of commercially-available pure substance. 1H-NMR spectra acquisition was automated. 1H-NMR absolute quantification was performed with a synthesised electronic reference signal and validated by comparison with enzymatic or HPLC analyses; the correlation coefficients between 1H-NMR data and enzymatic or HPLC data were highly significant. Depending on the species and tissues, 14-17 metabolites could be quantified with 15-25 min acquisition time. The detection limit was approximately 1-9 µg in the NMR tube, depending on the compound. Quantitative data were used for (1) a genetic study of strawberry fruit quality, (2) a functional study of tomato transformants overexpressing hexokinase and (3) a study of Arabidopsis phosphoenolpyruvate carboxylase transformants with several lines showing decreased activity of the enzyme. Biochemical phenotyping of the fruits of a strawberry offspring allowed the detection of quantitative trait loci (QTL) controlling fruit quality. Comparison of the roots of wild types and hexokinase tomato transformants using principal component analysis of metabolic profiles revealed that environmental factors, i.e. culture conditions, can significantly modify the metabolic status of plants and thus hide or emphasise the expression of a given genetic background. The decrease in phosphoenolpyruvate carboxylase activity (up to 75%) in Arabidopsis transformants impacted on the metabolic profiles without compromising plant growth, thus supporting the idea that the enzyme has a low influence on the carbon flux through the anaplerotic pathway.
Theoretical and Applied Genetics | 2012
Estelle Lerceteau-Köhler; Annick Moing; G. Guérin; C. Renaud; Aurélie Petit; Béatrice Denoyes
Fruit quality traits are major breeding targets in the Rosaceae. Several of the major Rosaceae species are current or ancient polyploids. To dissect the inheritance of fruit quality traits in polyploid fleshy fruit species, we used a cultivated strawberry segregating population comprising a 213 full-sibling F1 progeny from a cross between the variety ‘Capitola’ and the genotype ‘CF1116’. We previously developed the most comprehensive strawberry linkage map, which displays seven homoeology groups (HG), including each four homoeology linkage groups (Genetics 179:2045–2060, 2008). The map was used to identify quantitative trait loci (QTL) for 19 fruit traits related to fruit development, texture, colour, anthocyanin, sugar and organic acid contents. Analyses were carried out over two or three successive years on field-grown plants. QTL were detected for all the analysed traits. Because strawberry is an octopolyploid species, QTL controlling a given trait and located at orthologous positions on different homoeologous linkage groups within one HG are considered as homoeo-QTL. We found that, for various traits, about one-fourth of QTL were putative homoeo-QTL and were localised on two linkage groups. Several homoeo-QTL could be detected the same year, suggesting that several copies of the gene underlying the QTL are functional. The detection of some other homoeo-QTL was year-dependent. Therefore, changes in allelic expression could take place in response to environmental changes. We believe that, in strawberry as in other polyploid fruit species, the mechanisms unravelled in the present study may play a crucial role in the variations of fruit quality.
Journal of Experimental Botany | 2013
Amèlia Gaston; Justine Perrotte; Estelle Lerceteau-Köhler; Mathieu Rousseau-Gueutin; Aurélie Petit; Michel Hernould; Béatrice Denoyes
Strawberry (Fragaria sp.) stands as an interesting model for studying flowering behaviour and its relationship with asexual plant reproduction in polycarpic perennial plants. Strawberry produces both inflorescences and stolons (also called runners), which are lateral stems growing at the soil surface and producing new clone plants. In this study, the flowering and runnering behaviour of two cultivated octoploid strawberry (Fragaria × ananassa Duch., 2n = 8× = 56) genotypes, a seasonal flowering genotype CF1116 and a perpetual flowering genotype Capitola, were studied along the growing season. The genetic bases of the perpetual flowering and runnering traits were investigated further using a pseudo full-sibling F1 population issued from a cross between these two genotypes. The results showed that a single major quantitative trait locus (QTL) named FaPFRU controlled both traits in the cultivated octoploid strawberry. This locus was not orthologous to the loci affecting perpetual flowering (SFL) and runnering (R) in Fragaria vesca, therefore suggesting different genetic control of perpetual flowering and runnering in the diploid and octoploid Fragaria spp. Furthermore, the FaPFRU QTL displayed opposite effects on flowering (positive effect) and on runnering (negative effect), indicating that both traits share common physiological control. These results suggest that this locus plays a major role in strawberry plant fitness by controlling the balance between sexual and asexual plant reproduction.
Phytopathology | 2005
Béatrice Denoyes-Rothan; G. Guérin; Estelle Lerceteau-Köhler; Georgette Risser
ABSTRACT Anthracnose, caused by Colletotrichum acutatum, is a major disease of the octoploid cultivated strawberry, Fragaria x ananassa The inheritance of high and intermediate level plant resistances to C. acutatum, pathogenicity group 2, was investigated in an 8 x 8 factorial design. A single dominant gene (Rca2) controlled the high-level resistance, although minor genes may also contribute to resistance in cultivars such as Belrubi. The intermediate level of resistance was quantitative and controlled by minor genes. Analysis of 26 genotypes and cultivars from Fragaria spp. showed that the dominant gene was not rare in the germ plasm of F. x ananassa and that anthracnose resistance was also present in other species of Fragaria. These findings have important implications for anthracnose resistance breeding.
Phytopathology | 2007
Béatrice Denoyes-Rothan; G. Guérin; Estelle Lerceteau-Köhler; Georgette Risser
ABSTRACT Anthracnose, caused by Colletotrichum acutatum, is a major disease of the octoploid cultivated strawberry, Fragaria x ananassa The inheritance of high and intermediate level plant resistances to C. acutatum, pathogenicity group 2, was investigated in an 8 x 8 factorial design. A single dominant gene (Rca2) controlled the high-level resistance, although minor genes may also contribute to resistance in cultivars such as Belrubi. The intermediate level of resistance was quantitative and controlled by minor genes. Analysis of 26 genotypes and cultivars from Fragaria spp. showed that the dominant gene was not rare in the germ plasm of F. x ananassa and that anthracnose resistance was also present in other species of Fragaria. These findings have important implications for anthracnose resistance breeding.
Theoretical and Applied Genetics | 2003
Estelle Lerceteau-Köhler; G. Guérin; F. Laigret; Béatrice Denoyes-Rothan
Theoretical and Applied Genetics | 2005
Estelle Lerceteau-Köhler; G. Guérin; Béatrice Denoyes-Rothan
Crop Science | 2015
Sridevy Sriskandarajah; Mohammad Sameri; Estelle Lerceteau-Köhler; Anna Westerbergh
International horticultural congress | 2003
G. Guérin; Frédéric Laigret; Béatrice Denoyes-Rothan; Estelle Lerceteau-Köhler; Philippe Roudeillac