Estelle Mortimer
University of Leeds
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Estelle Mortimer.
Tectonics | 2005
Barbara Carrapa; Dirk Adelmann; George E. Hilley; Estelle Mortimer; Edward R. Sobel; Manfred R. Strecker
[1] The Puna-Altiplano plateau in South America is a high-elevation, low internal relief landform that is characterized by internal drainage and hyperaridity. Thermochronologic and sedimentologic observations from the Sierra de Calalaste region in the southwestern Puna plateau, Argentina, place new constraints on early plateau evolution by resolving the timing of uplift of mountain ranges that bound present-day basins and the filling pattern of these basins during late Eocene-Miocene time. Paleocurrent indicators, sedimentary provenance analyses, and apatite fission track thermochronology indicate that the original paleodrainage setting was disrupted by exhumation and uplift of the Sierra de Calalaste range between 24 and 29 Ma. This event was responsible for basin reorganization and the disruption of the regional fluvial system that has ultimately led to the formation of internal drainage conditions, which, in the Salar de Antofalla, were established not later than late Miocene. Upper Eocene-Oligocene sedimentary rocks flanking the range contain features that suggest an arid environment existed prior to and during its uplift. Provenance data indicate a common similar source located to the west for both the southern Puna and the Altiplano of Bolivia during the late EoceneOligocene with sporadic local sources. This suggests the existence of an extensive, longitudinally oriented foreland basin along the central Andes during this time. Citation: Carrapa, B., D. Adelmann, G. E. Hilley, E. Mortimer, E. R. Sobel, and M. R. Strecker (2005), Oligocene range uplift and development of plateau morphology in the southern central Andes, Tectonics, 24, TC4011, doi:10.1029/ 2004TC001762.
Geology | 2009
Manfred R. Strecker; Ricardo N. Alonso; Bodo Bookhagen; Barbara Carrapa; Isabelle Coutand; Mathis P. Hain; George E. Hilley; Estelle Mortimer; Lindsay M. Schoenbohm; Edward R. Sobel
Orogenic plateaus are extensive, high-elevation areas with low internal relief that have been attributed to deep-seated and/or climate-driven surface processes. In the latter case, models predict that lateral plateau growth results from increasing aridity along the margins as range uplift shields the orogen interior from precipitation. We analyze the spatiotemporal progression of basin isolation and fi lling at the eastern margin of the Puna Plateau of the Argentine Andes to determine if the topography predicted by such models is observed. We fithat the timing of basin fi lling and reexcavation is variable, suggesting nonsystematic plateau growth. Instead, the Airy isostatically compensated component of topography constitutes the majority of the mean elevation gain between the foreland and the plateau. This indicates that deep-seated phenomena, such as changes in crustal thickness and/or lateral density, are required to produce high plateau elevations. In contrast, the frequency of the uncompensated topography within the plateau and in the adjacent foreland that is interrupted by ranges appears similar, although the amplitude of this topographic component increases east of the plateau. Combined with sedimentologic observations, we infer that the low internal relief of the plateau likely results from increased aridity and sediment storage within the plateau and along its eastern margin.
Geological Society of America Bulletin | 2007
Estelle Mortimer; Barbara Carrapa; Isabelle Coutand; Lindsay M. Schoenbohm; Edward R. Sobel; José Sosa Gomez; Manfred R. Strecker
The style and mechanisms by which a foreland region is incorporated into an orogen depends on the tectonic style, effectiveness of uplift, and dynamic subsidence. Classical foreland-basin models reflect a self-similar propagation of deformation into the foreland in a thin-skinned thrust-belt setting governed by wedge mechanics. Thick-skinned foreland regions, which are characterized by high-angle reverse-fault–bounded basement uplifts and intervening basins, however, do not fit this idealized model. Unlike thin-skinned tectonic provinces, deformation and uplift in these regions may be highly variable in time and space. Furthermore, deformation patterns may be complicated by the presence of preexisting structures, particularly those which lie at orientations that enable them to be reactivated and utilized to accommodated deformation under compression. The Neogene El Cajon–Campo del Are-nal basin is one of a series of basins located along the eastern margin of the Puna Plateau within the Sierras Pampeanas, a region that is composed of a thick-skinned foreland fragmented by reverse-fault–bounded basement uplifts that regionally characterize an eastward-younging trend. This region is superimposed onto the Cretaceous Salta Rift province, which provides a series of pre-existing structures that may potentially be reactivated. The basin is located along the eastern margin of the Puna Plateau, an integral component of the Andean orogen, which includes several filled, uplifted, and internally drained Cenozoic intraplateau basins. Structural and sedimentological similarities exist between basins along the margin of the Puna and those within it. Understanding the evolution of foreland basins, such as the El Cajon–Campo del Arenal basin, provides possible mechanisms for the development and incorporation of marginal basins into orogenic belts, and in the case of the Andean orogen, the potential for these basins to be incorporated into the plateau. Our analysis, which integrates seismic, sedimentary, and thermochronological data, characterizes the evolution of this basin and surrounding ranges. The appearance in the sedimentary section of a distinct grain-age population derived from the basement erosion surface constrains the uplift and erosion of an out-of-sequence intrabasin high to ca. 6 Ma. The basin fill, therefore, records an evolution from an undeformed foreland to one that is compartmentalized by basement uplifts and that is incorporated into the greater orogenic structure. The data reveal the importance of the reactivation of preexisting structures along the basin margin in creating east-dipping structures in a generally west-dipping domain. These opposing faults on the basin margin consequently caused the out-of-sequence uplift of the intrabasin range, the Sierra de Quilmes. The Sierra de Quilmes fragments the foreland and, because its position is locked by loads to the west and east, creates increased deformation within the basin, basin fill, uplift, and incorporation into the orogen. Unlike basins within the plateau, however, the El Cajon–Campo del Arenal basin has been re-excavated and integrated once more into the foreland drainage network.
Geological Society, London, Special Publications | 2017
Douglas A. Paton; Estelle Mortimer; Neil Hodgson; D. van der Spuy
Abstract Crustal heterogeneity is considered to play a critical role in the position of continental break-up, yet this can only be demonstrated when a fully constrained pre-break-up configuration of both conjugate margins is achievable. Limitations in our understanding of the pre-break-up crustal structure in the offshore region of many margins preclude this. In the southern South Atlantic, which is an archetypal conjugate margin, this can be achieved because of the high confidence in plate reconstruction. Prior to addressing the role of crustal heterogeneity, two questions have to be addressed: first, what is the location of the regionally extensive Gondwanan Orogeny that remains enigmatic in the Orange Basin, offshore South Africa; and, second, although it has been established that the Argentinian Colorado rift basin has an east–west trend perpendicular to the Orange Basin and Atlantic spreading, where is the western continuation of this east–west trend? We present here a revised structural model for the southern South Atlantic by identifying the South African fold belt offshore. The fold belt trend changes from north–south to east–west offshore and correlates directly with the restored Colorado Basin. The Colorado–Orange rifts form a tripartite system with the Namibian Gariep Belt, which we call the Garies Triple Junction. All three rift branches were active during the break-up of Gondwana, but during the Atlantic rift phase the Colorado Basin failed while the other two branches continued to rift, defining the present day location of the South Atlantic. In addressing these two outstanding questions, this study challenges the premise that crustal heterogeneity controls the position of continental break-up because seafloor spreading demonstrably cross-cuts the pre-existing crustal heterogeneity. Furthermore, we highlight the importance of differentiating between early rift evolution and subsequent rifting that occurs immediately prior to seafloor spreading.
Geology | 2007
Estelle Mortimer; Barbara Carrapa
The displacement rate history of the Loreto fault, Gulf of California, is well documented; it is characterized by episodically accelerating displacement (10 k.y. frequency) superimposed upon a period of 200 k.y. of increasing fault displacement rate. A detailed conglomerate provenance analysis in the Loreto basin records the footwall unroofi ng history, which has been profoundly affected by increased fault displacement rate. Clast count data capture an immediate drainage response to a signifi cant increase in slip rate, along with the occurrence and systematic increase in abundance of a new source rock type. Our data record an increase in the rate of incision and catchment expansion associated with this increase in displacement rate. A provenance signal from a shorter-term (100 k.y.) displacement rate increase has a 30‐40 k.y. lag time. No change in provenance is recorded for high-frequency (10 k.y.) variations, which are fi ltered out by the system.
Basin Research | 2005
Estelle Mortimer; Sanjeev Gupta; Patience A. Cowie
Basin Research | 2012
Barbara Carrapa; Sharon Bywater-Reyes; Peter G. DeCelles; Estelle Mortimer; George E. Gehrels
Geological Society of America Memoirs | 2015
Lindsay M. Schoenbohm; Barbara Carrapa; H. M. McPherson; Jonathan R. Pratt; Sharon Bywater-Reyes; Estelle Mortimer
Marine and Petroleum Geology | 2016
Estelle Mortimer; Douglas A. Paton; Christopher A. Scholz; Manfred R. Strecker
Earth and Planetary Science Letters | 2016
Estelle Mortimer; Linda A. Kirstein; Finlay M. Stuart; Manfred R. Strecker