Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Estelle Proux-Wéra is active.

Publication


Featured researches published by Estelle Proux-Wéra.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Evolutionary erosion of yeast sex chromosomes by mating-type switching accidents

Jonathan L. Gordon; David Armisén; Estelle Proux-Wéra; Seán S. ÓhÉigeartaigh; Kevin P. Byrne; Kenneth H. Wolfe

We investigate yeast sex chromosome evolution by comparing genome sequences from 16 species in the family Saccharomycetaceae, including data from genera Tetrapisispora, Kazachstania, Naumovozyma, and Torulaspora. We show that although most yeast species contain a mating-type (MAT) locus and silent HML and HMR loci structurally analogous to those of Saccharomyces cerevisiae, their detailed organization is highly variable and indicates that the MAT locus is a deletion hotspot. Over evolutionary time, chromosomal genes located immediately beside MAT have continually been deleted, truncated, or transposed to other places in the genome in a process that is gradually shortening the distance between MAT and HML. Each time a gene beside MAT is removed by deletion or transposition, the next gene on the chromosome is brought into proximity with MAT and is in turn put at risk for removal. This process has also continually replaced the triplicated sequence regions, called Z and X, that allow HML and HMR to be used as templates for DNA repair at MAT during mating-type switching. We propose that the deletion and transposition events are caused by evolutionary accidents during mating-type switching, combined with natural selection to keep MAT and HML on the same chromosome. The rate of deletion accelerated greatly after whole-genome duplication, probably because genes were redundant and could be deleted without requiring transposition. We suggest that, despite its mutational cost, switching confers an evolutionary benefit by providing a way for an isolated germinating spore to reform spores if the environment is too poor.


Journal of Biotechnology | 2015

Targeted gene mutation in tetraploid potato through transient TALEN expression in protoplasts.

Alessandro Nicolia; Estelle Proux-Wéra; Inger Åhman; Nawaporn Onkokesung; Mariette Andersson; Erik Andreasson; Li-Hua Zhu

Potato is the third largest food crop in the world, however, the high degree of heterozygosity, the tetrasomic inheritance and severe inbreeding depression are major difficulties for conventional potato breeding. The rapid development of modern breeding methods offers new possibilities to enhance breeding efficiency and precise improvement of desirable traits. New site-directed mutagenesis techniques that can directly edit the target genes without any integration of recombinant DNA are especially favorable. Here we present a successful pipeline for site-directed mutagenesis in tetraploid potato through transient TALEN expression in protoplasts. The transfection efficiency of protoplasts was 38-39% and the site-directed mutation frequency was 7-8% with a few base deletions as the predominant type of mutation. Among the protoplast-derived calli, 11-13% showed mutations and a similar frequency (10%) was observed in the regenerated shoots. Our results indicate that the site-directed mutagenesis technology could be used as a new breeding method in potato as well as for functional analysis of important genes to promote sustainable potato production.


PLOS ONE | 2012

Sequence and analysis of the genome of the pathogenic yeast Candida orthopsilosis.

Alessandro Riccombeni; Genevieve Vidanes; Estelle Proux-Wéra; Kenneth H. Wolfe; Geraldine Butler

Candida orthopsilosis is closely related to the fungal pathogen Candida parapsilosis. However, whereas C. parapsilosis is a major cause of disease in immunosuppressed individuals and in premature neonates, C. orthopsilosis is more rarely associated with infection. We sequenced the C. orthopsilosis genome to facilitate the identification of genes associated with virulence. Here, we report the de novo assembly and annotation of the genome of a Type 2 isolate of C. orthopsilosis. The sequence was obtained by combining data from next generation sequencing (454 Life Sciences and Illumina) with paired-end Sanger reads from a fosmid library. The final assembly contains 12.6 Mb on 8 chromosomes. The genome was annotated using an automated pipeline based on comparative analysis of genomes of Candida species, together with manual identification of introns. We identified 5700 protein-coding genes in C. orthopsilosis, of which 5570 have an ortholog in C. parapsilosis. The time of divergence between C. orthopsilosis and C. parapsilosis is estimated to be twice as great as that between Candida albicans and Candida dubliniensis. There has been an expansion of the Hyr/Iff family of cell wall genes and the JEN family of monocarboxylic transporters in C. parapsilosis relative to C. orthopsilosis. We identified one gene from a Maltose/Galactoside O-acetyltransferase family that originated by horizontal gene transfer from a bacterium to the common ancestor of C. orthopsilosis and C. parapsilosis. We report that TFB3, a component of the general transcription factor TFIIH, undergoes alternative splicing by intron retention in multiple Candida species. We also show that an intein in the vacuolar ATPase gene VMA1 is present in C. orthopsilosis but not C. parapsilosis, and has a patchy distribution in Candida species. Our results suggest that the difference in virulence between C. parapsilosis and C. orthopsilosis may be associated with expansion of gene families.


BMC Bioinformatics | 2012

A pipeline for automated annotation of yeast genome sequences by a conserved-synteny approach

Estelle Proux-Wéra; David Armisén; Kevin P. Byrne; Kenneth H. Wolfe

BackgroundYeasts are a model system for exploring eukaryotic genome evolution. Next-generation sequencing technologies are poised to vastly increase the number of yeast genome sequences, both from resequencing projects (population studies) and from de novo sequencing projects (new species). However, the annotation of genomes presents a major bottleneck for de novo projects, because it still relies on a process that is largely manual.ResultsHere we present the Yeast Genome Annotation Pipeline (YGAP), an automated system designed specifically for new yeast genome sequences lacking transcriptome data. YGAP does automatic de novo annotation, exploiting homology and synteny information from other yeast species stored in the Yeast Gene Order Browser (YGOB) database. The basic premises underlying YGAPs approach are that data from other species already tells us what genes we should expect to find in any particular genomic region and that we should also expect that orthologous genes are likely to have similar intron/exon structures. Additionally, it is able to detect probable frameshift sequencing errors and can propose corrections for them. YGAP searches intelligently for introns, and detects tRNA genes and Ty-like elements.ConclusionsIn tests on Saccharomyces cerevisiae and on the genomes of Naumovozyma castellii and Tetrapisispora blattae newly sequenced with Roche-454 technology, YGAP outperformed another popular annotation program (AUGUSTUS). For S. cerevisiae and N. castellii, 91-93% of YGAPs predicted gene structures were identical to those in previous manually curated gene sets. YGAP has been implemented as a webserver with a user-friendly interface athttp://wolfe.gen.tcd.ie/annotation.


Fems Yeast Research | 2015

Clade- and species-specific features of genome evolution in the Saccharomycetaceae.

Kenneth H. Wolfe; David Armisén; Estelle Proux-Wéra; Seán S. ÓhÉigeartaigh; Haleema Azam; Jonathan L. Gordon; Kevin P. Byrne

Many aspects of the genomes of yeast species in the family Saccharomycetaceae have been well conserved during evolution. They have similar genome sizes, genome contents, and extensive collinearity of gene order along chromosomes. Gene functions can often be inferred reliably by using information from Saccharomyces cerevisiae. Beyond this conservative picture however, there are many instances where a species or a clade diverges substantially from the S. cerevisiae paradigm—for example, by the amplification of a gene family, or by the absence of a biochemical pathway or a protein complex. Here, we review clade-specific features, focusing on genomes sequenced in our laboratory from the post-WGD genera Naumovozyma, Kazachstania and Tetrapisispora, and from the non-WGD species Torulaspora delbrueckii. Examples include the loss of the pathway for histidine synthesis in the cockroach-associated species Tetrapisispora blattae; the presence of a large telomeric GAL gene cluster in To. delbrueckii; losses of the dynein and dynactin complexes in several independent yeast lineages; fragmentation of the MAT locus and loss of the HO gene in Kazachstania africana; and the patchy phylogenetic distribution of RNAi pathway components.


BMC Plant Biology | 2014

Evaluation and integration of functional annotation pipelines for newly sequenced organisms: the potato genome as a test case

David Amar; Itziar Frades; Agnieszka Danek; Tatyana Goldberg; Sanjeev Kumar Sharma; Peter E. Hedley; Estelle Proux-Wéra; Erik Andreasson; Ron Shamir; Oren Tzfadia; Erik Alexandersson

BackgroundFor most organisms, even if their genome sequence is available, little functional information about individual genes or proteins exists. Several annotation pipelines have been developed for functional analysis based on sequence, ‘omics’, and literature data. However, researchers encounter little guidance on how well they perform. Here, we used the recently sequenced potato genome as a case study. The potato genome was selected since its genome is newly sequenced and it is a non-model plant even if there is relatively ample information on individual potato genes, and multiple gene expression profiles are available.ResultsWe show that the automatic gene annotations of potato have low accuracy when compared to a “gold standard” based on experimentally validated potato genes. Furthermore, we evaluate six state-of-the-art annotation pipelines and show that their predictions are markedly dissimilar (Jaccard similarity coefficient of 0.27 between pipelines on average). To overcome this discrepancy, we introduce a simple GO structure-based algorithm that reconciles the predictions of the different pipelines. We show that the integrated annotation covers more genes, increases by over 50% the number of highly co-expressed GO processes, and obtains much higher agreement with the gold standard.ConclusionsWe find that different annotation pipelines produce different results, and show how to integrate them into a unified annotation that is of higher quality than each single pipeline. We offer an improved functional annotation of both PGSC and ITAG potato gene models, as well as tools that can be applied to additional pipelines and improve annotation in other organisms. This will greatly aid future functional analysis of ‘-omics’ datasets from potato and other organisms with newly sequenced genomes. The new potato annotations are available with this paper.


Frontiers in Plant Science | 2015

A novel workflow correlating RNA-seq data to Phythophthora infestans resistance levels in wild Solanum species and potato clones.

Itziar Frades; Kibrom B. Abreha; Estelle Proux-Wéra; Åsa Lankinen; Erik Andreasson; Erik Alexandersson

Comparative transcriptomics between species can provide valuable understanding of plant-pathogen interactions. Here, we focus on wild Solanum species and potato clones with varying degree of resistance against Phytophthora infestans, which causes the devastating late blight disease in potato. The transcriptomes of three wild Solanum species native to Southern Sweden, Solanum dulcamara, Solanum nigrum, and Solanum physalifolium were compared to three potato clones, Desiree (cv.), SW93-1015 and Sarpo Mira. Desiree and S. physalifolium are susceptible to P. infestans whereas the other four have different degrees of resistance. By building transcript families based on de novo assembled RNA-seq across species and clones and correlating these to resistance phenotypes, we created a novel workflow to identify families with expanded or depleted number of transcripts in relation to the P. infestans resistance level. Analysis was facilitated by inferring functional annotations based on the family structure and semantic clustering. More transcript families were expanded in the resistant clones and species and the enriched functions of these were associated to expected gene ontology (GO) terms for resistance mechanisms such as hypersensitive response, host programmed cell death and endopeptidase activity. However, a number of unexpected functions and transcripts were also identified, for example transmembrane transport and protein acylation expanded in the susceptible group and a cluster of Zinc knuckle family proteins expanded in the resistant group. Over 400 expressed putative resistance (R-)genes were identified and resistant clones Sarpo Mira and SW93-1015 had ca 25% more expressed putative R-genes than susceptible cultivar Desiree. However, no differences in numbers of susceptibility (S-)gene homologs were seen between species and clones. In addition, we identified P. infestans transcripts including effectors in the early stages of P. infestans-Solanum interactions.


Genome Biology and Evolution | 2013

Evolutionary Mobility of the Ribosomal DNA Array in Yeasts

Estelle Proux-Wéra; Kevin P. Byrne; Kenneth H. Wolfe

The ribosomal DNA (rDNA) of eukaryotes is organized as large tandem arrays. Here, we compare the genomic locations of rDNA among yeast species and show that, despite its huge size (>1 Mb), the rDNA array has moved around the genome several times within the family Saccharomycetaceae. We identify an ancestral, nontelomeric, rDNA site that is conserved across many species including Saccharomyces cerevisiae. Within the genus Lachancea, however, the rDNA apparently transposed from the ancestral site to a new site internal to a different chromosome, becoming inserted into a short intergenic region beside a tRNA gene. In at least four other yeast lineages, the rDNA moved from the ancestral site to telomeric locations. Remarkably, both the ancestral rDNA site and the new site in Lachancea are adjacent to protein-coding genes whose products maintain the specialized chromatin structure of rDNA (HMO1 and CDC14, respectively). In almost every case where the rDNA was lost from the ancestral site, the entire array disappeared without any other rearrangements in the region, leaving just an intergenic spacer of less than 2 kb. The mechanism by which this large and complex locus moves around the genome is unknown, but we speculate that it may involve the formation of double-strand DNA breaks by Fob1 protein or the formation of extrachromosomal rDNA circles.


Nucleic Acids Research | 2017

Identification of endoribonuclease specific cleavage positions reveals novel targets of RNase III in Streptococcus pyogenes

Anaïs Le Rhun; Anne-Laure Lécrivain; Johan Reimegård; Estelle Proux-Wéra; Laura Broglia; Cristina Della Beffa; Emmanuelle Charpentier

Abstract A better understanding of transcriptional and post-transcriptional regulation of gene expression in bacteria relies on studying their transcriptome. RNA sequencing methods are used not only to assess RNA abundance but also the exact boundaries of primary and processed transcripts. Here, we developed a method, called identification of specific cleavage position (ISCP), which enables the identification of direct endoribonuclease targets in vivo by comparing the 5΄ and 3΄ ends of processed transcripts between wild type and RNase deficient strains. To demonstrate the ISCP method, we used as a model the double-stranded specific RNase III in the human pathogen Streptococcus pyogenes. We mapped 92 specific cleavage positions (SCPs) among which, 48 were previously described and 44 are new, with the characteristic 2 nucleotides 3΄ overhang of RNase III. Most SCPs were located in untranslated regions of RNAs. We screened for RNase III targets using transcriptomic differential expression analysis (DEA) and compared those with the RNase III targets identified using the ISCP method. Our study shows that in S. pyogenes, under standard growth conditions, RNase III has a limited impact both on antisense transcripts and on global gene expression with the expression of most of the affected genes being downregulated in an RNase III deletion mutant.


Genome Biology and Evolution | 2017

The Huperzia selago Shoot Tip Transcriptome Sheds New Light on the Evolution of Leaves

Anastasiia I. Evkaikina; Lidija Berke; Marina A. Romanova; Estelle Proux-Wéra; Alexandra N. Ivanova; Catarina Rydin; Katharina Pawlowski; Olga V. Voitsekhovskaja

Abstract Lycopodiophyta—consisting of three orders, Lycopodiales, Isoetales and Selaginellales, with different types of shoot apical meristems (SAMs)—form the earliest branch among the extant vascular plants. They represent a sister group to all other vascular plants, from which they differ in that their leaves are microphylls—that is, leaves with a single, unbranched vein, emerging from the protostele without a leaf gap—not megaphylls. All leaves represent determinate organs originating on the flanks of indeterminate SAMs. Thus, leaf formation requires the suppression of indeterminacy, that is, of KNOX transcription factors. In seed plants, this is mediated by different groups of transcription factors including ARP and YABBY. We generated a shoot tip transcriptome of Huperzia selago (Lycopodiales) to examine the genes involved in leaf formation. Our H. selago transcriptome does not contain any ARP homolog, although transcriptomes of Selaginella spp. do. Surprisingly, we discovered a YABBY homolog, although these transcription factors were assumed to have evolved only in seed plants. The existence of a YABBY homolog in H. selago suggests that YABBY evolved already in the common ancestor of the vascular plants, and subsequently was lost in some lineages like Selaginellales, whereas ARP may have been lost in Lycopodiales. The presence of YABBY in the common ancestor of vascular plants would also support the hypothesis that this common ancestor had a simplex SAM. Furthermore, a comparison of the expression patterns of ARP in shoot tips of Selaginella kraussiana (Harrison CJ, etal. 2005. Independent recruitment of a conserved developmental mechanism during leaf evolution. Nature 434(7032):509–514.) and YABBY in shoot tips of H. selago implies that the development of microphylls, unlike megaphylls, does not seem to depend on the combined activities of ARP and YABBY. Altogether, our data show that Lycopodiophyta are a diverse group; so, in order to understand the role of Lycopodiophyta in evolution, representatives of Lycopodiales, Selaginellales, as well as of Isoetales, have to be examined.

Collaboration


Dive into the Estelle Proux-Wéra's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Erik Andreasson

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

Erik Alexandersson

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

Itziar Frades

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Oren Tzfadia

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alessandro Nicolia

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge