Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ester Lázaro is active.

Publication


Featured researches published by Ester Lázaro.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Resistance of virus to extinction on bottleneck passages: study of a decaying and fluctuating pattern of fitness loss.

Ester Lázaro; Cristina Escarmís; Juan Pérez-Mercader; Susanna C. Manrubia; Esteban Domingo

RNA viruses display high mutation rates and their populations replicate as dynamic and complex mutant distributions, termed viral quasispecies. Repeated genetic bottlenecks, which experimentally are carried out through serial plaque-to-plaque transfers of the virus, lead to fitness decrease (measured here as diminished capacity to produce infectious progeny). Here we report an analysis of fitness evolution of several low fitness foot-and-mouth disease virus clones subjected to 50 plaque-to-plaque transfers. Unexpectedly, fitness decrease, rather than being continuous and monotonic, displayed a fluctuating pattern, which was influenced by both the virus and the state of the host cell as shown by effects of recent cell passage history. The amplitude of the fluctuations increased as fitness decreased, resulting in a remarkable resistance of virus to extinction. Whereas the frequency distribution of fitness in control (independent) experiments follows a log-normal distribution, the probability of fitness values in the evolving bottlenecked populations fitted a Weibull distribution. We suggest that multiple functions of viral genomic RNA and its encoded proteins, subjected to high mutational pressure, interact with cellular components to produce this nontrivial, fluctuating pattern.


Journal of General Virology | 2001

Molecular intermediates of fitness gain of an RNA virus: Characterization of a mutant spectrum by biological and molecular cloning

Armando Arias; Ester Lázaro; Cristina Escarmís; Esteban Domingo

The mutant spectrum of a virus quasispecies in the process of fitness gain of a debilitated foot-and-mouth disease virus (FMDV) clone has been analysed. The mutant spectrum was characterized by nucleotide sequencing of three virus genomic regions (internal ribosome entry site; region between the two AUG initiation codons; VP1-coding region) from 70 biological clones (virus from individual plaques formed on BHK-21 cell monolayers) and 70 molecular clones (RT--PCR products cloned in E. coli). The biological and molecular clones provided statistically indistinguishable definitions of the mutant spectrum with regard to the distribution of mutations among the three genomic regions analysed and with regard to the types of mutations, mutational hot-spots and mutation frequencies. Therefore, the molecular cloning procedure employed provides a simple protocol for the characterization of mutant spectra of viruses that do not grow in cell culture. The number of mutations found repeated among the clones analysed was higher than expected from the mean mutation frequencies. Some components of the mutant spectrum reflected genomes that were dominant in the prior evolutionary history of the virus (previous passages), confirming the presence of memory genomes in virus quasispecies. Other components of the mutant spectrum were genomes that became dominant at a later stage of evolution, suggesting a predictive value of mutant spectrum analysis with regard to the outcome of virus evolution. The results underline the observation that greater insight into evolutionary processes of viruses may be gained from detailed clonal analyses of the mutant swarms at the sequence level.


Journal of Virology | 2007

Analysis of Ribavirin Mutagenicity in Human Hepatitis C Virus Infection

Stéphane Chevaliez; Rozenn Brillet; Ester Lázaro; Christophe Hézode; Jean-Michel Pawlotsky

ABSTRACT The addition of ribavirin to alpha interferon therapy significantly increases response rates for patients with chronic hepatitis C virus (HCV) infection, but ribavirins antiviral mechanisms are unknown. Ribavirin has been suggested to have mutagenic potential in vitro that would lead to “error catastrophe,” i.e., the generation of nonviable viral quasispecies due to the increment in the number of mutant genomes, which prevents the transmission of meaningful genetic information. We used extensive sequence-based analysis of two independent genomic regions in order to test in vivo the hypothesis that ribavirin administration accelerates the accumulation of mutations in the viral genome and that this acceleration occurs only when HCV replication is profoundly inhibited by coadministered alpha interferon. The rate of variation of the consensus sequence, the frequency of mutation, the error generation rate, and the between-sample genetic distance were measured for patients receiving ribavirin monotherapy, a combination of alpha interferon three times per week plus ribavirin, or a combination of alpha interferon daily plus ribavirin. Ribavirin monotherapy did not increase the rate of variation of the consensus sequence, the mutation frequency, the error generation rate, or the between-sample genetic distance. The accumulation of nucleotide substitutions did not accelerate, relative to the pretreatment period, during combination therapy with ribavirin and alpha interferon, even when viral replication was profoundly inhibited by alpha interferon. This study strongly undermines the hypothesis whereby ribavirin acts as an HCV mutagen in vivo.


Current Topics in Microbiology and Immunology | 2006

Population Bottlenecks in Quasispecies Dynamics

C. Escarmís; Ester Lázaro; Susanna C. Manrubia

The characteristics of natural populations result from different stochastic and deterministic processes that include reproduction with error, selection, and genetic drift. In particular, population fluctuations constitute a stochastic process that may play a very relevant role in shaping the structure of populations. For example, it is expected that small asexual populations will accumulate mutations at a higher rate than larger ones. As a consequence, in any population the fixation of mutations is accelerated when environmental conditions cause population bottlenecks. Bottlenecks have been relatively frequent in the history of life and it is generally accepted that they are highly relevant for speciation. Although population bottlenecks can occur in any species, their effects are more noticeable in organisms that form large and heterogeneous populations, such as RNA viral quasispecies. Bottlenecks can also positively select and isolate particles that still keep the ability to infect cells from a disorganized population created by crossing the error threshold.


Philosophical Transactions of the Royal Society B | 2010

Pathways to extinction: beyond the error threshold

Susanna C. Manrubia; Esteban Domingo; Ester Lázaro

Since the introduction of the quasispecies and the error catastrophe concepts for molecular evolution by Eigen and their subsequent application to viral populations, increased mutagenesis has become a common strategy to cause the extinction of viral infectivity. Nevertheless, the high complexity of virus populations has shown that viral extinction can occur through several other pathways apart from crossing an error threshold. Increases in the mutation rate enhance the appearance of defective forms and promote the selection of mechanisms that are able to counteract the accelerated appearance of mutations. Current models of viral evolution take into account more realistic scenarios that consider compensatory and lethal mutations, a highly redundant genotype-to-phenotype map, rough fitness landscapes relating phenotype and fitness, and where phenotype is described as a set of interdependent traits. Further, viral populations cannot be understood without specifying the characteristics of the environment where they evolve and adapt. Altogether, it turns out that the pathways through which viral quasispecies go extinct are multiple and diverse.


Journal of Virology | 2002

Modeling viral genome fitness evolution associated with serial bottleneck events: Evidence of stationary states of fitness

Ester Lázaro; Cristina Escarmís; Esteban Domingo; Susanna C. Manrubia

ABSTRACT Evolution of fitness values upon replication of viral populations is strongly influenced by the size of the virus population that participates in the infections. While large population passages often result in fitness gains, repeated plaque-to-plaque transfers result in average fitness losses. Here we develop a numerical model that describes fitness evolution of viral clones subjected to serial bottleneck events. The model predicts a biphasic evolution of fitness values in that a period of exponential decrease is followed by a stationary state in which fitness values display large fluctuations around an average constant value. This biphasic evolution is in agreement with experimental results of serial plaque-to-plaque transfers carried out with foot-and-mouth disease virus (FMDV) in cell culture. The existence of a stationary phase of fitness values has been further documented by serial plaque-to-plaque transfers of FMDV clones that had reached very low relative fitness values. The statistical properties of the stationary state depend on several parameters of the model, such as the probability of advantageous versus deleterious mutations, initial fitness, and the number of replication rounds. In particular, the size of the bottleneck is critical for determining the trend of fitness evolution.


Current Topics in Microbiology and Immunology | 2005

Foot-and-mouth disease virus evolution: exploring pathways towards virus extinction.

Esteban Domingo; Nonia Pariente; A. Airaksinen; C. González-Lopez; Saleta Sierra; M. Herrera; A. Grande-Pérez; Pedro R. Lowenstein; Susanna C. Manrubia; Ester Lázaro; C. Escarmís

Foot-and-mouth disease virus (FMDV) is genetically and phenotypically variable. As a typical RNA virus, FMDV follows a quasispecies dynamics, with the many biological implications of such a dynamics. Mutant spectra provide a reservoir of FMDV variants, and minority subpopulations may become dominant in response to environmental demands or as a result of statistical fluctuations in population size. Accumulation of mutations in the FMDV genome occurs upon subjecting viral populations to repeated bottleneck events and upon viral replication in the presence of mutagenic base or nucleoside analogs. During serial bottleneck passages, FMDV survive during extended rounds of replication maintaining low average relative fitness, despite linear accumulation of mutations in the consensus genomic sequence. The critical event is the occurrence of a low frequency of compensatory mutations. In contrast, upon replication in the presence of mutagens, the complexity of mutant spectra increases, apparently no compensatory mutations can express their fitness-enhancing potential, and the virus can cross an error threshold for maintenance of genetic information, resulting in virus extinction. Low relative fitness and low viral load favor FMDV extinction in cell culture. The comparison of the molecular basis of resistance to extinction upon bottleneck passage and extinction by enhanced mutagenesis is providing new insights in the understanding of quasispecies dynamics. Such a comparison is contributing to the development of new antiviral strategies based on the transition of viral replication into error catastrophe.


Journal of Molecular Biology | 2008

Beneficial Effects of Population Bottlenecks in an RNA Virus Evolving at Increased Error Rate

Clara E. Cases-González; María Arribas; Esteban Domingo; Ester Lázaro

RNA viruses replicate their genomes with a very high error rate and constitute highly heterogeneous mutant distributions similar to the molecular quasispecies introduced to explain the evolution of prebiotic replicators. The genetic information included in a quasispecies can only be faithfully transmitted below a critical error rate. When the error threshold is crossed, the population structure disorganizes, and it is substituted by a randomly distributed mutant spectrum. For viral quasispecies, the increase in error rate is associated with a decrease in specific infectivity that can lead to the extinction of the population. In contrast, a strong resistance to extinction has been observed in populations subjected to bottleneck events despite the increased accumulation of mutations. In the present study, we show that the mutagenic nucleoside analogue 5-azacytidine (AZC) is a potent mutagen for bacteriophage Qbeta. We have evaluated the effect of the increase in the replication error rate in populations of the bacteriophage Qbeta evolving either in liquid medium or during development of clonal populations in semisolid agar. Populations evolving in liquid medium in the presence of AZC were extinguished, while during plaque development in the presence of AZC, the virus experienced a significant increase in the replicative ability. Individual viruses isolated from preextinction populations could withstand high error rates during a number of plaque-to-plaque transfers. The response to mutagenesis is interpreted in the light of features of plaque development versus infections by free-moving virus particles and the distance to a mutation-selection equilibrium. The results suggest that clonal bacteriophage populations away from equilibrium derive replicative benefits from increased mutation rates. This is relevant to the application of lethal mutagenesis in vivo, in the case of viruses that encounter changing environments and are transmitted from cell to cell under conditions of limited diffusion that mimic the events taking place during plaque development.


BMC Evolutionary Biology | 2013

Evolution at increased error rate leads to the coexistence of multiple adaptive pathways in an RNA virus

Laura Cabanillas; María Arribas; Ester Lázaro

BackgroundWhen beneficial mutations present in different genomes spread simultaneously in an asexual population, their fixation can be delayed due to competition among them. This interference among mutations is mainly determined by the rate of beneficial mutations, which in turn depends on the population size, the total error rate, and the degree of adaptation of the population. RNA viruses, with their large population sizes and high error rates, are good candidates to present a great extent of interference. To test this hypothesis, in the current study we have investigated whether competition among beneficial mutations was responsible for the prolonged presence of polymorphisms in the mutant spectrum of an RNA virus, the bacteriophage Qβ, evolved during a large number of generations in the presence of the mutagenic nucleoside analogue 5-azacytidine.ResultsThe analysis of the mutant spectra of bacteriophage Qβ populations evolved at artificially increased error rate shows a large number of polymorphic mutations, some of them with demonstrated selective value. Polymorphisms distributed into several evolutionary lines that can compete among them, making it difficult the emergence of a defined consensus sequence. The presence of accompanying deleterious mutations, the high degree of recurrence of the polymorphic mutations, and the occurrence of epistatic interactions generate a highly complex interference dynamics.ConclusionsInterference among beneficial mutations in bacteriophage Qβ evolved at increased error rate permits the coexistence of multiple adaptive pathways that can provide selective advantages by different molecular mechanisms. In this way, interference can be seen as a positive factor that allows the exploration of the different local maxima that exist in rugged fitness landscapes.


BMC Evolutionary Biology | 2010

Phenotypic effect of mutations in evolving populations of RNA molecules

Michael Stich; Ester Lázaro; Susanna C. Manrubia

BackgroundThe secondary structure of folded RNA sequences is a good model to map phenotype onto genotype, as represented by the RNA sequence. Computational studies of the evolution of ensembles of RNA molecules towards target secondary structures yield valuable clues to the mechanisms behind adaptation of complex populations. The relationship between the space of sequences and structures, the organization of RNA ensembles at mutation-selection equilibrium, the time of adaptation as a function of the population parameters, the presence of collective effects in quasispecies, or the optimal mutation rates to promote adaptation all are issues that can be explored within this framework.ResultsWe investigate the effect of microscopic mutations on the phenotype of RNA molecules during their in silico evolution and adaptation. We calculate the distribution of the effects of mutations on fitness, the relative fractions of beneficial and deleterious mutations and the corresponding selection coefficients for populations evolving under different mutation rates. Three different situations are explored: the mutation-selection equilibrium (optimized population) in three different fitness landscapes, the dynamics during adaptation towards a goal structure (adapting population), and the behavior under periodic population bottlenecks (perturbed population).ConclusionsThe ratio between the number of beneficial and deleterious mutations experienced by a population of RNA sequences increases with the value of the mutation rate μ at which evolution proceeds. In contrast, the selective value of mutations remains almost constant, independent of μ, indicating that adaptation occurs through an increase in the amount of beneficial mutations, with little variations in the average effect they have on fitness. Statistical analyses of the distribution of fitness effects reveal that small effects, either beneficial or deleterious, are well described by a Pareto distribution. These results are robust under changes in the fitness landscape, remarkably when, in addition to selecting a target secondary structure, specific subsequences or low-energy folds are required. A population perturbed by bottlenecks behaves similarly to an adapting population, struggling to return to the optimized state. Whether it can survive in the long run or whether it goes extinct depends critically on the length of the time interval between bottlenecks.

Collaboration


Dive into the Ester Lázaro's collaboration.

Top Co-Authors

Avatar

Susanna C. Manrubia

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

María Arribas

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Esteban Domingo

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Cristina Escarmís

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Laura Cabanillas

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Juan P. G. Ballesta

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Stich

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. San Felix

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge