Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ester Marco-Noales is active.

Publication


Featured researches published by Ester Marco-Noales.


Applied and Environmental Microbiology | 2006

Survival Strategy of Erwinia amylovora against Copper: Induction of the Viable-but-Nonculturable State

Mónica Ordax; Ester Marco-Noales; María M. López; Elena G. Biosca

ABSTRACT Copper compounds, widely used to control plant-pathogenic bacteria, have traditionally been employed against fire blight, caused by Erwinia amylovora. However, recent studies have shown that some phytopathogenic bacteria enter into the viable-but-nonculturable (VBNC) state in the presence of copper. To determine whether copper kills E. amylovora or induces the VBNC state, a mineral medium without copper or supplemented with 0.005, 0.01, or 0.05 mM Cu2+ was inoculated with 107 CFU/ml of this bacterium and monitored over 9 months. Total and viable cell counts were determined by epifluorescence microscopy using the LIVE/DEAD kit and by flow cytometry with 5-cyano-2,3-ditolyl tetrazolium chloride and SYTO 13. Culturable cells were counted on Kings B nonselective solid medium. Changes in the bacterial morphology in the presence of copper were observed by scanning electron microscopy. E. amylovora entered into the VBNC state at all three copper concentrations assayed, much faster when the copper concentration increased. The addition of different agents which complex copper allowed the resuscitation (restoration of culturability) of copper-induced VBNC cells. Finally, copper-induced VBNC cells were virulent only for the first 5 days, while resuscitated cells always regained their pathogenicity on immature fruits over 9 months. These results have shown, for the first time, the induction of the VBNC state in E. amylovora as a survival strategy against copper.


Applied and Environmental Microbiology | 2001

Transmission to eels, portals of entry, and putative reservoirs of Vibrio vulnificus serovar E (biotype 2)

Ester Marco-Noales; Miguel Milán; Belén Fouz; Eva Sanjuán; Carmen Amaro

ABSTRACT Vibrio vulnificus serovar E (formerly biotype 2) is the etiologic agent that is responsible for the main infectious disease affecting farmed eels. Although the pathogen can theoretically use water as a vehicle for disease transmission, it has not been isolated from tank water during epizootics to date. In this work, the mode of transmission of the disease to healthy eels, the portals of entry of the pathogen into fish, and their putative reservoirs have been investigated by means of laboratory and field experiments. Results of the experiments of direct and indirect host-to-host transmission, patch contact challenges, and oral-anal intubations suggest that water is the prime vehicle for disease transmission and that gills are the main portals of entry into the eel body. The pathogen mixed with food can also come into the fish through the gastrointestinal tract and develop the disease. These conclusions were supported by field data obtained during a natural outbreak in which we were able to isolate this microorganism from tank water for the first time. The examination of some survivors from experimental infections by indirect immunofluorescence and scanning electron microscopy showed thatV. vulnificus serovar E formed a biofilm-like structure on the eel skin surface. In vitro assays demonstrated that the ability of the pathogen to colonize both hydrophilic and hydrophobic surfaces was inhibited by glucose. The capacity to form biofilms on eel surface could constitute a strategy for surviving between epizootics or outbreaks, and coated survivors could act as reservoirs for the disease.


Plant and Soil | 2006

Structural characteristics and plant-beneficial effects of bacteria colonizing the shoots of field grown conventional and genetically modified T4-lysozyme producing potatoes

Frank Rasche; Ester Marco-Noales; Henk Velvis; Leo S. van Overbeek; María M. López; Jan Dirk van Elsas; Angela Sessitsch

Genetically modified potatoes expressing antibacterial protein T4 lysozyme may offer effective control strategies for bacterial pathogens causing severe potato diseases. Apart from this beneficial effect, it is very important to investigate such engineered potatoes carefully for potential adverse effects on potato-associated bacteria which frequently exhibit plant beneficial functions such as plant growth promotion and antagonism towards pathogens invading the plant. Two field experiments were carried out in Spain to analyze the potential effects of conventional and genetically modified T4-lysozyme producing potatoes on shoot-associated bacteria. The first baseline field trial 2002 was performed in Meliana in which three conventional potato lines, Achirana Inta, Desirée, and Merkur, were cultivated and sampled at flowering. The second field trial was conducted in Cella in 2003 in order to compare the effects of a senescent transgenic, T4 lysozyme expressing potato trait, Desirée DL 12, with its isogenic, non-transformed parental line Desirée. Structural characteristics of potato shoot-associated bacteria was assayed by 16S rRNA-based terminal restriction fragment length polymorphism (T-RFLP) analysis and dominant community members within T-RFLP profiles were identified by sequence analysis of generated 16S rRNA gene libraries. Cultivable bacteria isolated from shoots of potatoes grown in the Meliana field trial were monitored for antibiosis against Ralstonia solanacearum, whereas isolates derived from shoots of potatoes cultivated in the Cella trial were screened for antagonism against Ralstonia solanacearum and Rhizoctonia solani, and for 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase production. Determined antagonists were identified by 16S rRNA gene analysis. All potato traits hosted a cultivar-specific community of bacteria with antagonism against the pathogens and/or potential to produce ACC deaminase. Several antagonists obtained from the Cella field potatoes were also observed as ACC deaminase producers. Community profiling revealed a greater diversity differentiation between the senescent T4 lysozyme expressing and parental Desirée lines grown in the Cella field as compared to the variations between the three flowering conventional lines cultivated in the Meliana field trial. Effects of the two varying field sites and different vegetation stages were greater than those of T4 lysozyme when investigating the community composition of bacteria colonizing the shoots of the Desirée line cultivated in both field trials.


Journal of Applied Microbiology | 2009

Survival of Erwinia amylovora in mature apple fruit calyces through the viable but nonculturable (VBNC) state

M. Ordax; Elena G. Biosca; S.C. Wimalajeewa; M.M. López; Ester Marco-Noales

Aims:  Survival of Erwinia amylovora, causal agent of fire blight in pome fruits and other rosaceous plants, was monitored inside mature apples calyces under some storage conditions utilized in fruit.


International Journal of Systematic and Evolutionary Microbiology | 2010

Taxonomic study of Marinomonas strains isolated from the seagrass Posidonia oceanica, with descriptions of Marinomonas balearica sp. nov. and Marinomonas pollencensis sp. nov.

Elena Espinosa; Ester Marco-Noales; Daniel Gómez; Patricia Lucas-Elío; Mónica Ordax; Neus Garcias-Bonet; Carlos M. Duarte; Antonio Sanchez-Amat

Novel aerobic, Gram-negative bacteria with DNA G+C contents below 50 mol% were isolated from the culturable microbiota associated with the Mediterranean seagrass Posidonia oceanica. 16S rRNA gene sequence analyses revealed that they belong to the genus Marinomonas. Strain IVIA-Po-186 is a strain of the species Marinomonas mediterranea, showing 99.77 % 16S rRNA gene sequence similarity with the type strain, MMB-1(T), and sharing all phenotypic characteristics studied. This is the first description of this species forming part of the microbiota of a marine plant. A second strain, designated IVIA-Po-101(T), was closely related to M. mediterranea based on phylogenetic studies. However, it differed in characteristics such as melanin synthesis and tyrosinase, laccase and antimicrobial activities. In addition, strain IVIA-Po-101(T) was auxotrophic and unable to use acetate. IVIA-Po-101(T) shared 97.86 % 16S rRNA gene sequence similarity with M. mediterranea MMB-1(T), but the level of DNA-DNA relatedness between the two strains was only 10.3 %. On the basis of these data, strain IVIA-Po-101(T) is considered to represent a novel species of the genus Marinomonas, for which the name Marinomonas balearica sp. nov. is proposed. The type strain is IVIA-Po-101(T) (=CECT 7378(T) =NCIMB 14432(T)). A third novel strain, IVIA-Po-185(T), was phylogenetically distant from all recognized Marinomonas species. It shared the highest 16S rRNA gene sequence similarity (97.4 %) with the type strain of Marinomonas pontica, but the level of DNA-DNA relatedness between the two strains was only 14.5 %. A differential chemotaxonomic marker of this strain in the genus Marinomonas is the presence of the fatty acid C(17 : 0) cyclo. Strain IVIA-Po-185(T) is thus considered to represent a second novel species of the genus, for which the name Marinomonas pollencensis sp. nov. is proposed. The type strain is IVIA-Po-185(T) (=CECT 7375(T) =NCIMB 14435(T)). An emended description of the genus Marinomonas is given based on the description of these two novel species, as well as other Marinomonas species described after the original description of the genus.


International Journal of Systematic and Evolutionary Microbiology | 2011

Marinomonas alcarazii sp. nov., M. rhizomae sp. nov., M. foliarum sp. nov., M. posidonica sp. nov. and M. aquiplantarum sp. nov., isolated from the microbiota of the seagrass Posidonia oceanica.

Patricia Lucas-Elío; Ester Marco-Noales; Elena Espinosa; Mónica Ordax; María Milagros López; Neus Garcias-Bonet; Núria Marbà; Carlos M. Duarte; Antonio Sanchez-Amat

Five novel Gram-reaction-negative aerobic marine bacterial strains with DNA G+C contents <50 mol% were isolated from the seagrass Posidonia oceanica. 16S rRNA sequence analysis indicated that they belonged to the genus Marinomonas. Major fatty acid compositions, comprising C₁₀:₀ 3-OH, C₁₆:₀, C₁₆:₁ω7c and C₁₈:₁ω7c, supported the affiliation of these strains to the genus Marinomonas. Strains IVIA-Po-14b(T), IVIA-Po-145(T) and IVIA-Po-155(T) were closely related to Marinomonas pontica 46-16(T), according to phylogenetic analysis. However, DNA-DNA hybridization values <35 % among these strains revealed that they represented different species. Further differences in the phenotypes and minor fatty acid compositions were also found among the strains. Another two strains, designated IVIA-Po-181(T) and IVIA-Po-159(T), were found to be closely related to M. dokdonensis DSW10-10(T) but DNA-DNA relatedness levels <40 % in pairwise comparisons, as well as some additional differences in phenotypes and fatty acid compositions supported the creation of two novel species. Accordingly, strains IVIA-Po-14b(T )( = CECT 7730(T)  = NCIMB 14671(T)), IVIA-Po-145(T) ( = CECT 7377(T)  = NCIMB 14431(T)), IVIA-Po-155(T) ( = CECT 7731(T)  = NCIMB 14672(T)), IVIA-Po-181(T) ( = CECT 7376(T)  = NCIMB 14433(T)) and IVIA-Po-159(T) ( = CECT 7732(T)  = NCIMB 14673(T)) represent novel species, for which the names Marinomonas alcarazii sp. nov., Marinomonas rhizomae sp. nov., Marinomonas foliarum sp. nov., Marinomonas posidonica sp. nov. and Marinomonas aquiplantarum sp. nov. are proposed, respectively.


Journal of Applied Microbiology | 2000

An indirect immunofluorescent antibody technique for detection and enumeration of Vibrio vulnificus serovar E (biotype 2): delevopment and applications

Ester Marco-Noales; Elena G. Biosca; M. Milán; Carmen Amaro

The applications of an indirect fluorescent antibody technique (IFAT), developed to detect and enumerate the pathogenic bacterium Vibrio vulnificus serovar E from water and clinical samples, are described. This technique proved accurate for detecting V. vulnificus, even under starvation conditions and in the non‐culturable state, and could differentiate this species from other bacteria which share the same habitats. The IFAT was succesfully used to diagnose vibriosis from naturally‐ and artificially‐infected eels. The overall data suggest that applying this technique properly in environmental and epidemiological/epizootiological studies could significantly increase our knowledge of this bacterium.


Applied and Environmental Microbiology | 2012

Role for Rhizobium rhizogenes K84 Cell Envelope Polysaccharides in Surface Interactions

Ana M. Abarca-Grau; Lindsey P. Burbank; Héctor D. de Paz; Juan C. Crespo-Rivas; Ester Marco-Noales; María M. López; José M. Vinardell; Susanne B. von Bodman; Ramón Penyalver

ABSTRACT Rhizobium rhizogenes strain K84 is a commercial biocontrol agent used worldwide to control crown gall disease. The organism binds tightly to polypropylene substrate and efficiently colonizes root surfaces as complex, multilayered biofilms. A genetic screen identified two mutants in which these surface interactions were affected. One of these mutants failed to attach and form biofilms on the abiotic surface although, interestingly, it exhibited normal biofilm formation on the biological root tip surface. This mutant is disrupted in a wcbD ortholog gene, which is part of a large locus predicted to encode functions for the biosynthesis and export of a group II capsular polysaccharide (CPS). Expression of a functional copy of wcbD in the mutant background restored the ability of the bacteria to attach and form normal biofilms on the abiotic surface. The second identified mutant attached and formed visibly denser biofilms on both abiotic and root tip surfaces. This mutant is disrupted in the rkpK gene, which is predicted to encode a UDP-glucose 6-dehydrogenase required for O-antigen lipopolysaccharide (LPS) and K-antigen capsular polysaccharide (KPS) biosynthesis in rhizobia. The rkpK mutant from strain K84 was deficient in O-antigen synthesis and exclusively produced rough LPS. We also show that strain K84 does not synthesize the KPS typical of some other rhizobia strains. In addition, we identified a putative type II CPS, distinct from KPS, that mediates cell-surface interactions, and we show that O antigen of strain K84 is necessary for normal cell-cell interactions in the biofilms.


PLOS ONE | 2015

Medfly Ceratitis capitata as Potential Vector for Fire Blight Pathogen Erwinia amylovora : Survival and Transmission.

Mónica Ordax; Jaime E. Piquer-Salcedo; Ricardo D. Santander; Beatriz Sabater-Muñoz; Elena G. Biosca; María M. López; Ester Marco-Noales

Monitoring the ability of bacterial plant pathogens to survive in insects is required for elucidating unknown aspects of their epidemiology and for designing appropriate control strategies. Erwinia amylovora is a plant pathogenic bacterium that causes fire blight, a devastating disease in apple and pear commercial orchards. Studies on fire blight spread by insects have mainly focused on pollinating agents, such as honeybees. However, the Mediterranean fruit fly (medfly) Ceratitis capitata (Diptera: Tephritidae), one of the most damaging fruit pests worldwide, is also common in pome fruit orchards. The main objective of the study was to investigate whether E. amylovora can survive and be transmitted by the medfly. Our experimental results show: i) E. amylovora can survive for at least 8 days inside the digestive tract of the medfly and until 28 days on its external surface, and ii) medflies are able to transmit the bacteria from inoculated apples to both detached shoots and pear plants, being the pathogen recovered from lesions in both cases. This is the first report on E. amylovora internalization and survival in/on C. capitata, as well as the experimental transmission of the fire blight pathogen by this insect. Our results suggest that medfly can act as a potential vector for E. amylovora, and expand our knowledge on the possible role of these and other insects in its life cycle.


PLOS ONE | 2017

Lateral flow immunoassay for on-site detection of Xanthomonas arboricola pv. pruni in symptomatic field samples

Pablo López-Soriano; Patricia Noguera; María Teresa Gorris; Rosa Puchades; Ángel Maquieira; Ester Marco-Noales; M.M. López

Xanthomonas arboricola pv. pruni is a quarantine pathogen and the causal agent of the bacterial spot disease of stone fruits and almond, a major threat to Prunus species. Rapid and specific detection methods are essential to improve disease management, and therefore a prototype of a lateral flow immunoassay (LFIA) was designed for the detection of X. arboricola pv. pruni in symptomatic field samples. It was developed by producing polyclonal antibodies which were then combined with carbon nanoparticles and assembled on nitrocellulose strips. The specificity of the LFIA was tested against 87 X. arboricola pv. pruni strains from different countries worldwide, 47 strains of other Xanthomonas species and 14 strains representing other bacterial genera. All X. arboricola pv. pruni strains were detected and cross-reactions were observed only with four strains of X. arboricola pv. corylina, a hazelnut pathogen that does not share habitat with X. arboricola pv. pruni. The sensitivity of the LFIA was assessed with suspensions from pure cultures of three X. arboricola pv. pruni strains and with spiked leaf extracts prepared from four hosts inoculated with this pathogen (almond, apricot, Japanese plum and peach). The limit of detection observed with both pure cultures and spiked samples was 104 CFU ml-1. To demonstrate the accuracy of the test, 205 samples naturally infected with X. arboricola pv. pruni and 113 samples collected from healthy plants of several different Prunus species were analyzed with the LFIA. Results were compared with those obtained by plate isolation and real time PCR and a high correlation was found among techniques. Therefore, we propose this LFIA as a screening tool that allows a rapid and reliable diagnosis of X. arboricola pv. pruni in symptomatic plants.

Collaboration


Dive into the Ester Marco-Noales's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

M.M. López

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

María M. López

Agencia Estatal de Meteorología

View shared research outputs
Top Co-Authors

Avatar

Carlos M. Duarte

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Belén Fouz

University of Valencia

View shared research outputs
Top Co-Authors

Avatar

Núria Marbà

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Neus Garcias-Bonet

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge