Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Esther Berrocoso is active.

Publication


Featured researches published by Esther Berrocoso.


Life Sciences | 2002

Antidepressant-like effects of tramadol and other central analgesics with activity on monoamines reuptake, in helpless rats.

M.O. Rojas-Corrales; Esther Berrocoso; Juan Gibert-Rahola; J.A. Micó

Affective states are regulated mainly by serotonin and noradrenaline. However the opioid system has been also related to antidepressant-induced mood improvement, and the mu-opioid receptor has been involved in affective responses to a sustained painful stimulus. Similarly, antidepressant drugs induce an antinociceptive effect via both the monoaminergic and opioid systems, probably involving sensorial and affective dimensions of pain. The aim of this study was to test three opiate analgesics, which also inhibit monoamine reuptake, in the learned helplessness model of depression in rats. Helpless rats receiving (+/-)tramadol (10, 20 mg/Kg) or (-)methadone (2, 4 mg/Kg) showed a decreased number of failures to avoid or escape aversive stimulus (shock) in both the second and the third daily sessions, compared with controls. Rats receiving levorphanol (0.5, 1 mg/Kg) showed a decreased number of such failures in the third session. The number of crossings in the intertrial interval (ITI) was not significantly modified by (+/-)tramadol or (-)methadone. Levorphanol enhanced ITI crosses at 1 mg/Kg. These results, together with other clinical and experimental data, suggest that analgesics with monoaminergic properties improve mood and that this effect may account for their analgesic effect in regulating the affective dimension of pain. From this, it seems probable that the analgesic effect of opiates could be induced by adding together the attenuation produced of both the sensorial and the affective dimensions of pain.


Neuropsychopharmacology | 2012

The Mu-Opioid Receptor and the NMDA Receptor Associate in PAG Neurons: Implications in Pain Control

María Rodríguez-Muñoz; Pilar Sánchez-Blázquez; Ana Vicente-Sánchez; Esther Berrocoso; Javier Garzón

The capacity of opioids to alleviate inflammatory pain is negatively regulated by the glutamate-binding N-methyl-D-aspartate receptor (NMDAR). Increased activity of this receptor complicates the clinical use of opioids to treat persistent neuropathic pain. Immunohistochemical and ultrastructural studies have demonstrated the coexistence of both receptors within single neurons of the CNS, including those in the mesencephalic periaqueductal gray (PAG), a region that is implicated in the opioid control of nociception. We now report that mu-opioid receptors (MOR) and NMDAR NR1 subunits associate in the postsynaptic structures of PAG neurons. Morphine disrupts this complex by protein kinase-C (PKC)-mediated phosphorylation of the NR1 C1 segment and potentiates the NMDAR–CaMKII, pathway that is implicated in morphine tolerance. Inhibition of PKC, but not PKA or GRK2, restored the MOR–NR1 association and rescued the analgesic effect of morphine as well. The administration of N-methyl-D-aspartic acid separated the MOR–NR1 complex, increased MOR Ser phosphorylation, reduced the association of the MOR with G-proteins, and diminished the antinociceptive capacity of morphine. Inhibition of PKA, but not PKC, CaMKII, or GRK2, blocked these effects and preserved morphine antinociception. Thus, the opposing activities of the MOR and NMDAR in pain control affect their relation within neurons of structures such as the PAG. This finding could be exploited in developing bifunctional drugs that would act exclusively on those NMDARs associated with MORs.


Current Pharmaceutical Design | 2009

Opiates as antidepressants

Esther Berrocoso; Pilar Sánchez-Blázquez; Javier Garzón; Juan Antonio Micó

The pathophysiology of mood disorders involves several genetic and social predisposing factors, as well as a dysregulated response to a chronic stressor, i.e. chronic pain. Our present view that depression involves a dysfunction of the monoaminergic system is a result of important clinical and preclinical observations over the past 40 years. In fact, current pharmacological treatment for depression is based on the use of drugs that act mainly by enhancing brain serotonin and noradrenaline neurotransmission by the blockade of the active reuptake mechanism for these neurotransmitters. However, a substantial number of patients do not respond adequately to antidepressant drugs. In view of this, there is an intense search to identify novel targets (receptors) for antidepressant therapy. Opioid peptides and their receptors are potential candidates for the development of novel antidepressant treatment. In this context, endogenous opioid peptides are co-expressed in brain areas known to play a major role in affective disorders and in the action of antidepressant drugs. The actions of endogenous opioids and opiates are mediated by three receptor subtypes (mu, delta and kappa), which are coupled to different intracellular effector systems. Also, antidepressants which increase the availability of noradrenaline and serotonin through the inhibition of the reuptake of both monoamines lead to the enhancement of the opioid pathway. Tricyclic antidepressants show an analgesic effect in neuropathic and inflammatory pain that is blocked by the opioid antagonist naloxone. A compilation of the most significant studies will illustrate the actual and potential value of the opioid system for clinical research and drug development.


Biological Psychiatry | 2013

Chronic pain leads to concomitant noradrenergic impairment and mood disorders

Cristina Alba-Delgado; Meritxell Llorca-Torralba; Igor Horrillo; Jorge E. Ortega; Juan Antonio Micó; Pilar Sánchez-Blázquez; J. Javier Meana; Esther Berrocoso

BACKGROUND Patients suffering chronic pain are at high risk of suffering long-lasting emotional disturbances characterized by persistent low mood and anxiety. We propose that this might be the result of a functional impairment in noradrenergic circuits associated with locus coeruleus (LC) and prefrontal cortex, where emotional and sensorial pain processes overlap. METHODS We used a chronic constriction injury of sciatic nerve as a model of neuropathic pain in male Sprague-Dawley rats to assess the time-dependent changes that might potentially precipitate mood disorders (2, 7, 14, and 28 days after injury). This was measured through a combination of behavioral, electrophysiological, microdialysis, immunohistochemical, and Western blot assays. RESULTS As expected, nerve injury produced an early and stable decrease in sensorial pain threshold over the testing period. By contrast, long-term neuropathic pain (28 days after injury) resulted in an inability to cope with stressful situations, provoking depressive and anxiogenic-like behaviors, even more intense than the aversiveness associated with pain perception. The onset of these behavioral changes coincided with irruption of noradrenergic dysfunction, evident as: an increase in LC bursting activity; in tyrosine hydroxylase expression and that of the noradrenaline transporter; and enhanced expression and sensitivity of α2-adrenoceptors in the LC. CONCLUSIONS Long-term neuropathic pain leads to anxio-depressive-like behaviors that are more predominant than the aversion of a painful experience. These changes are consistent with the impairment of noradrenergic system described in depressive disorders.


Current Neuropharmacology | 2011

Neurotrophins Role in Depression Neurobiology: A Review of Basic and Clinical Evidence

Fani Lourença Neto; Gisela Borges; Sonia Torres-Sanchez; Juan Antonio Micó; Esther Berrocoso

Depression is a neuropsychiatric disorder affecting a huge percentage of the active population especially in developed countries. Research has devoted much of its attention to this problematic and many drugs have been developed and are currently prescribed to treat this pathology. Yet, many patients are refractory to the available therapeutic drugs, which mainly act by increasing the levels of the monoamines serotonin and noradrenaline in the synaptic cleft. Even in the cases antidepressants are effective, it is usually observed a delay of a few weeks between the onset of treatment and remission of the clinical symptoms. Additionally, many of these patients who show remission with antidepressant therapy present a relapse of depression upon treatment cessation. Thus research has focused on other possible molecular targets, besides monoamines, underlying depression. Both basic and clinical evidence indicates that depression is associated with several structural and neurochemical changes where the levels of neurotrophins, particularly of brain-derived neurotrophic factor (BDNF), are altered. Antidepressants, as well as other therapeutic strategies, seem to restore these levels. Neuronal atrophy, mostly detected in limbic structures that regulate mood and cognition, like the hippocampus, is observed in depressed patients and in animal behavioural paradigms for depression. Moreover, chronic antidepressant treatment enhances adult hippocampal neurogenesis, supporting the notion that this event underlies antidepressants effects. Here we review some of the preclinical and clinical studies, aimed at disclosing the role of neurotrophins in the pathophysiological mechanisms of depression and the mode of action of antidepressants, which favour the neurotrophic/neurogenic hypothesis.


Journal of Neuroinflammation | 2011

Origin and consequences of brain Toll-like receptor 4 pathway stimulation in an experimental model of depression

Iciar Gárate; Borja García-Bueno; José Lm Madrigal; Lidia Bravo; Esther Berrocoso; Javier R. Caso; Juan Antonio Micó; Juan C. Leza

BackgroundThere is a pressing need to identify novel pathophysiological pathways relevant to depression that can help to reveal targets for the development of new medications. Toll-like receptor 4 (TLR-4) has a regulatory role in the brains response to stress. Psychological stress may compromise the intestinal barrier, and increased gastrointestinal permeability with translocation of lipopolysaccharide (LPS) from Gram-negative bacteria may play a role in the pathophysiology of major depression.MethodsAdult male Sprague-Dawley rats were subjected to chronic mild stress (CMS) or CMS+intestinal antibiotic decontamination (CMS+ATB) protocols. Levels of components of the TLR-4 signaling pathway, of LPS and of different inflammatory, oxidative/nitrosative and anti-inflammatory mediators were measured by RT-PCR, western blot and/or ELISA in brain prefrontal cortex. Behavioral despair was studied using Porsolts test.ResultsCMS increased levels of TLR-4 and its co-receptor MD-2 in brain as well as LPS and LPS-binding protein in plasma. In addition, CMS also increased interleukin (IL)-1β, COX-2, PGE2 and lipid peroxidation levels and reduced levels of the anti-inflammatory prostaglandin 15d-PGJ2 in brain tissue. Intestinal decontamination reduced brain levels of the pro-inflammatory parameters and increased 15d-PGJ2, however this did not affect depressive-like behavior induced by CMS.ConclusionsOur results suggest that LPS from bacterial translocation is responsible, at least in part, for the TLR-4 activation found in brain after CMS, which leads to release of inflammatory mediators in the CNS. The use of Gram-negative antibiotics offers a potential therapeutic approach for the adjuvant treatment of depression.


Psychoneuroendocrinology | 2013

Differential central pathology and cognitive impairment in pre-diabetic and diabetic mice

Juan Jose Ramos-Rodriguez; Oscar Ortiz; Margarita Jiménez-Palomares; Kevin R. Kay; Esther Berrocoso; Maria Isabel Murillo-Carretero; Germán Perdomo; Tara L. Spires-Jones; Irene Cózar-Castellano; Alfonso M. Lechuga-Sancho; Monica Garcia-Alloza

Although age remains the main risk factor to suffer Alzheimers disease (AD) and vascular dementia (VD), type 2 diabetes (T2D) has turned up as a relevant risk factor for dementia. However, the ultimate underlying mechanisms for this association remain unclear. In the present study we analyzed central nervous system (CNS) morphological and functional consequences of long-term insulin resistance and T2D in db/db mice (leptin receptor KO mice). We also included C57Bl6 mice fed with high fat diet (HFD) and a third group of C57Bl6 streptozotocin (STZ) treated mice. Db/db mice exhibited pathological characteristics that mimic both AD and VD, including age dependent cognitive deterioration, brain atrophy, increased spontaneous hemorrhages and tau phosphorylation, affecting the cortex preferentially. A similar profile was observed in STZ-induced diabetic mice. Moreover metabolic parameters, such as body weight, glucose and insulin levels are good predictors of many of these alterations in db/db mice. In addition, in HFD-induced hyperinsulinemia in C57Bl6 mice, we only observed mild CNS alterations, suggesting that central nervous system dysfunction is associated with well established T2D. Altogether our results suggest that T2D may promote many of the pathological and behavioral alterations observed in dementia, supporting that interventions devoted to control glucose homeostasis could improve dementia progress and prognosis.


Anesthesiology | 2012

Depressive-like States Heighten the Aversion to Painful Stimuli in a Rat Model of Comorbid Chronic Pain and Depression

Lidia Bravo; Juan Antonio Micó; Raquel Rey-Brea; Beatriz G. Pérez-Nievas; Juan C. Leza; Esther Berrocoso

Background: Chronic pain and depression are two complex states with sensory/somatic and emotional components, and they may mutually exacerbate one another in conditions of comorbidity, leading to a poorer prognosis. Methods: The authors have evaluated the sensory and emotional components in a rat model combining chronic constriction injury (CCI, a model of chronic neuropathic pain) with unpredictable chronic mild stress (CMS, an experimental model of depression). In addition, the phosphorylation/activation of the extracellular signal-regulated kinases 1 and 2 and neuronal density was also evaluated in the anterior cingulate cortex. Four groups were tested: sham-control, sham-CMS, CCI-control, and CCI-CMS. Results: CMS selectively heightens aversion to painful experiences in animals subjected to CCI, as measured in the place escape/avoidance test at 20, 25, and 30 min (CCI-CMS (mean ± SEM): 75.68 ± 3.32, 66.75 ± 4.70, 77.54 ± 3.60 vs. CCI-control: 44.66 ± 6.07, 43.17 ± 6.92, 52.83 ± 5.92, respectively), in conjunction with an increase in the accumulation of phosphorylation/activation of the extracellular signal-regulated kinases (CCI-CMS: 4.17 ± 0.52 vs. sham-control: 0.96 ± 0.05) and a decrease in neuronal density in the anterior cingulate cortex. In contrast, chronic pain did not exacerbate the characteristic profile of depression (anhedonia and behavioral despair) in rats subjected to CMS. Furthermore, depression enhances the perception of some specific modalities of sensorial pain such as cold allodynia but has no influence on mechanical threshold. Conclusions: These findings support the theory that depression leads to emotional dysfunction in the interpretation of pain in patients suffering chronic pain. In addition, combined animal models of pain-depression may provide a valuable tool to study the comorbidity of pain and depression.


The International Journal of Neuropsychopharmacology | 2013

Active behaviours produced by antidepressants and opioids in the mouse tail suspension test

Esther Berrocoso; Kazutaka Ikeda; Ichiro Sora; George R. Uhl; Pilar Sánchez-Blázquez; Juan Antonio Micó

Most classical preclinical tests to predict antidepressant activity were initially developed to detect compounds that influenced noradrenergic and/or serotonergic activity, in accordance with the monoaminergic hypothesis of depression. However, central opioid systems are also known to influence the pathophysiology of depression. While the tail suspension test (TST) is very sensitive to several types of antidepressant, the traditional form of scoring the TST does not distinguish between different modes of action. The present study was designed to compare the behavioural effects of classical noradrenergic and/or serotonergic antidepressants in the TST with those of opioids. We developed a sampling technique to differentiate between behaviours in the TST, namely, curling, swinging and immobility. Antidepressants that inhibit noradrenaline and/or serotonin re-uptake (imipramine, venlafaxine, duloxetine, desipramine and citalopram) decreased the immobility of mice, increasing their swinging but with no effect on their curling behaviour. No differences were observed between antidepressants that act on noradrenergic or serotoninergic transmission. While opioid compounds also decreased the immobility of the mice [morphine, codeine, levorphanol, (-)-methadone, (±)-tramadol and (+)-tramadol], they selectively increased curling behaviour. Blocking opioid receptors with naloxone prevented the antidepressant-like effect of codeine, and μ-opioid receptor knockout decreased normal curling behaviour and blocked (±)-tramadol-induced curling, further demonstrating the reliability and validity of this approach. These results show that at least two behaviourally distinct processes occur in the TST, highlighting the antidepressant-like effects of opioids evident in this test. Furthermore, our data suggest that swinging and curling behaviours are mediated by enhanced monoamine and opioid neurotransmission, respectively.


Journal of Psychopharmacology | 2004

Antidepressant-Like Effect of tramadol and its Enantiomers in Reserpinized Mice: Comparativestudy with Desipramine, Fluvoxamine, Venlafaxine and Opiates:

M. Olga Rojas-Corrales; Esther Berrocoso; Juan Gibert-Rahola; Juan Antonio Micó

Tramadol is a centrally acting analgesic that demonstrates opioid and monoaminergic properties. Several studies have suggested that tramadol could play a role in mood improvement. Moreover, it has previously been shown that tramadol is effective in the forced swimming test in mice and the learned helplessness model in rats, two behavioural modelspredictive of antidepressant activity. The aim of the present study was to test tramadol and its enantiomers in the reserpine test in mice, aclassical observational test widely used in the screening of antidepressant drugs. This test is a non-behavioural method where only objective parameters such as rectal temperature and palprebral ptosis are considered. Moreover, we compared the effects of tramadol and itsenantiomers with those of antidepressants (desipramine, fluvoxamine and venlafaxine) and opiates [morphine (–)-methadone and levorphanol]. Racemic tramadol, (–)-tramadol, desipramine and venlafaxine reversed the reserpine syndrome (rectal temperature and ptosis), whereas(+)-tramadol and fluvoxamine only antagonized the reserpine-induced ptosis, without any effect on temperature. Opiates did not reversereserpine-induced hypothermia. (–)-Methadone showed slight effects regarding reserpine-induced ptosis, morphine and levorphanol had no effect. These results show that tramadol has an effect comparable to clinically effective antidepressants in a test predictive of antidepressant activity, without behavioural implications. Together with other clinical and experimental data, this suggests that tramadol has an inherent antidepressant-like (mood improving) activity, and that this effect could have clinical repercussions on the affective component of pain.

Collaboration


Dive into the Esther Berrocoso's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Juan C. Leza

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge