Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Esther Bridges is active.

Publication


Featured researches published by Esther Bridges.


Cancer Research | 2011

DLL4-Notch Signaling Mediates Tumor Resistance to Anti-VEGF Therapy In Vivo

Richard C.A. Sainson; Chern Ein Oon; Helen Turley; Russell Leek; Helen Sheldon; Esther Bridges; Wen Shi; Cameron Snell; Emma T. Bowden; Herren Wu; Partha S. Chowdhury; Angela J. Russell; Craig P. Montgomery; Richard Poulsom; Adrian L. Harris

Resistance to VEGF inhibitors is emerging as a major clinical problem. Notch signaling has been implicated in tumor angiogenesis. Therefore, to investigate mechanisms of resistance to angiogenesis inhibitors, we transduced human glioblastoma cells with retroviruses encoding Notch delta-like ligand 4 (DLL4), grew them as tumor xenografts and then treated the murine hosts with the VEGF-A inhibitor bevacizumab. We found that DLL4-mediated tumor resistance to bevacizumab in vivo. The large vessels induced by DLL4-Notch signaling increased tumor blood supply and were insensitive to bevacizumab. However, blockade of Notch signaling by dibenzazepine, a γ-secretase inhibitor, disrupted the large vessels and abolished the tumor resistance. Multiple molecular mechanisms of resistance were shown, including decreased levels of hypoxia-induced VEGF and increased levels of the VEGF receptor VEGFR1 in the tumor stroma, decreased levels of VEGFR2 in large blood vessels, and reduced levels of VEGFR3 overall. DLL4-expressing tumors were also resistant to a VEGFR targeting multikinase inhibitor. We also observed activation of other pathways of tumor resistance driven by DLL4-Notch signaling, including the FGF2-FGFR and EphB4-EprinB2 pathways, the inhibition of which reversed tumor resistance partially. Taken together, our findings show the importance of classifying mechanisms involved in angiogenesis in tumors, and how combination therapy to block DLL4-Notch signaling may enhance the efficacy of VEGF inhibitors, particularly in DLL4-upregulated tumors, and thus provide a rational base for the development of novel strategies to overcome antiangiogenic resistance in the clinic.


Proceedings of the National Academy of Sciences of the United States of America | 2009

HIF-2 alpha maintains an undifferentiated state in neural crest-like human neuroblastoma tumor-initiating cells

Alexander Pietras; Loen M. Hansford; A. Sofie Sofie Johnsson; Esther Bridges; Jonas Sjölund; David Gisselsson; Matilda Rehn; Siv Beckman; Rosa Noguera; Samuel Navarro; Jörg Cammenga; Erik Fredlund; David R. Kaplan; Sven Påhlman

High hypoxia-inducible factor-2α (HIF-2α) protein levels predict poor outcome in neuroblastoma, and hypoxia dedifferentiates cultured neuroblastoma cells toward a neural crest-like phenotype. Here, we identify HIF-2α as a marker of normoxic neural crest-like neuroblastoma tumor-initiating/stem cells (TICs) isolated from patient bone marrows. Knockdown of HIF-2α reduced VEGF expression and induced partial sympathetic neuronal differentiation when these TICs were grown in vitro under stem cell-promoting conditions. Xenograft tumors of HIF-2α-silenced cells were widely necrotic, poorly vascularized, and resembled the bulk of tumor cells in clinical neuroblastomas by expressing additional sympathetic neuronal markers, whereas control tumors were immature, well-vascularized, and stroma-rich. Thus, HIF-2α maintains an undifferentiated state of neuroblastoma TICs. Because low differentiation is associated with poor outcome and angiogenesis is crucial for tumor growth, HIF-2α is an attractive target for neuroblastoma therapy.


Cancer Research | 2008

Hypoxia-inducible factor-2alpha correlates to distant recurrence and poor outcome in invasive breast cancer.

Karolina Helczynska; Anna Maria Larsson; Linda Holmquist Mengelbier; Esther Bridges; Erik Fredlund; Signe Borgquist; Göran Landberg; Sven Påhlman; Karin Jirström

Differential regulation as well as target gene specificity of the two hypoxia-inducible factor (HIF)-alpha subunits HIF-1alpha and HIF-2alpha in various tumors and cell lines have been suggested. In breast cancer, the prognostic significance of HIF-1alpha is not clear-cut and that of HIF-2alpha is largely unknown. Using IHC analyses of HIF-1alpha, HIF-2alpha, and vascular endothelial growth factor (VEGF) expression in a tissue microarray of invasive breast cancer specimens from 512 patients, we investigated the expression patterns of the 2 HIF-alpha subunits in relation to established clinicopathologic variables, VEGF expression, and survival. HIF-1alpha and HIF-2alpha protein levels and their effect on survival were additionally analyzed in a second cohort of 179 patients. To evaluate the individual role of each subunit in the hypoxic response and induction of VEGF, HIF-alpha protein and HIF-alpha and VEGF mRNA levels were further studied in cultured breast cancer cells after hypoxic induction and/or knockdown of HIF-alpha subunits by siRNA by Western blot and Quantitative Real-Time PCR techniques. We showed that although HIF-1alpha and HIF-2alpha protein levels in breast cancer specimens were not interrelated, high levels of both HIF-1alpha and HIF-2alpha associated to high VEGF expression. HIF-2alpha expression was an independent prognostic factor associated to reduced recurrence-free and breast cancer-specific survival, whereas HIF-1alpha did not exhibit these correlations. In cultured cells, acute hypoxia induced both HIF-proteins. At prolonged hypoxia, HIF-2alpha remained accumulated, whereas HIF-1alpha protein levels decreased, in agreement with the oxygen level and time-dependent induction of HIFs recently reported in neuroblastoma.


Cancer Cell | 2013

A Core Human Primary Tumor Angiogenesis Signature Identifies the Endothelial Orphan Receptor ELTD1 as a Key Regulator of Angiogenesis

Massimo Masiero; Filipa Costa Simões; Hee Dong Han; Cameron Snell; Tessa Peterkin; Esther Bridges; Lingegowda S. Mangala; Sherry Yen Yao Wu; Sunila Pradeep; Demin Li; Cheng Han; Heather J. Dalton; Gabriel Lopez-Berestein; Jurriaan B. Tuynman; Neil Mortensen; Roger Patient; Anil K. Sood; Alison H. Banham; Adrian L. Harris; Francesca M. Buffa

Summary Limited clinical benefits derived from anti-VEGF therapy have driven the identification of new targets involved in tumor angiogenesis. Here, we report an integrative meta-analysis to define the transcriptional program underlying angiogenesis in human cancer. This approach identified ELTD1, an orphan G-protein-coupled receptor whose expression is induced by VEGF/bFGF and repressed by DLL4 signaling. Extensive analysis of multiple cancer types demonstrates significant upregulation of ELTD1 in tumor-associated endothelial cells, with a higher expression correlating with favorable prognosis. Importantly, ELTD1 silencing impairs endothelial sprouting and vessel formation in vitro and in vivo, drastically reducing tumor growth and greatly improving survival. Collectively, these results provide insight into the regulation of tumor angiogenesis and highlight ELTD1 as key player in blood vessel formation.


Biochemical Pharmacology | 2011

The angiogenic process as a therapeutic target in cancer.

Esther Bridges; Adrian L. Harris

Angiogenesis has emerged as a critical process for tumour progression. Identifying key pathways involved in the regulation and promotion of angiogenesis has resulted in the development of numerous approaches targeting pro-angiogenic signalling pathways. The most prominent and characterised pro-angiogenic pathway is the vascular endothelial growth factor signalling pathway. This review will describe several inhibitors of angiogenesis currently in clinical trial and their various targets. Targeting pro-angiogenic pathways has improved outcome for many patients, however, the emerging problems with drug resistance with clinically approved angiogenic inhibitors will also be discussed in this review. It is hoped that identifying the causes of tumour re-growth and disease progression following treatment will enable future anti-angiogenic therapies to circumvent resistance.


Journal of Biological Chemistry | 2014

Fatty Acid-binding Protein 4, a Point of Convergence for Angiogenic and Metabolic Signaling Pathways in Endothelial Cells

Ulrike Harjes; Esther Bridges; Alan McIntyre; Barbara A. Fielding; Adrian L. Harris

Background: The pro-angiogenic endothelial fatty acid-binding protein 4 (FABP4) is regulated by VEGFA. Results: VEGFA-induced FABP4 was dependent on Delta-like ligand4 (DLL4)-NOTCH signaling and FOXO1. Conclusion: DLL4-NOTCH together with Foxo1 are key regulators of FABP4. Significance: The results link NOTCH and angiogenic signaling directly to FABP4 induction and potentially to FABP4-mediated fatty acid metabolism and may provide a bypass mechanism for anti-VEGFA therapy. Fatty acid-binding protein 4 (FABP4) is an adipogenic protein and is implicated in atherosclerosis, insulin resistance, and cancer. In endothelial cells, FABP4 is induced by VEGFA, and inhibition of FABP4 blocks most of the VEGFA effects. We investigated the DLL4-NOTCH-dependent regulation of FABP4 in human umbilical vein endothelial cells by gene/protein expression and interaction analyses following inhibitor treatment and RNA interference. We found that FABP4 is directly induced by NOTCH. Stimulation of NOTCH signaling with human recombinant DLL4 led to FABP4 induction, independently of VEGFA. FABP4 induction by VEGFA was reduced by blockade of DLL4 binding to NOTCH or inhibition of NOTCH signal transduction. Chromatin immunoprecipitation of the NOTCH intracellular domain showed increased binding to two specific regions in the FABP4 promoter. The induction of FABP4 gene expression was dependent on the transcription factor FOXO1, which was essential for basal expression of FABP4, and FABP4 up-regulation following stimulation of the VEGFA and/or the NOTCH pathway. Thus, we show that the DLL4-NOTCH pathway mediates endothelial FABP4 expression. This indicates that induction of the angiogenesis-restricting DLL4-NOTCH can have pro-angiogenic effects via this pathway. It also provides a link between DLL4-NOTCH and FOXO1-mediated regulation of endothelial gene transcription, and it shows that DLL4-NOTCH is a nodal point in the integration of pro-angiogenic and metabolic signaling in endothelial cells. This may be crucial for angiogenesis in the tumor environment.


Future Oncology | 2011

Notch regulation of tumor angiogenesis

Esther Bridges; Chern Ein Oon; Adrian L. Harris

The growth of new blood vessels (angiogenesis) is critical for tumor growth and progression. The highly conserved Notch signaling pathway is involved in a variety of cell fate decisions and regulates many cellular biological processes, including angiogenesis. Aberrant Notch signaling has also been implicated in tumorigenesis. Notch ligands and receptors are expressed on many different cell types present within the tumor, including tumor cells and the stromal compartment. This article highlights in particular the various mechanisms by which Notch signaling can mediate tumor angiogenesis. The most studied Notch ligands, Delta-like 4 and Jagged1, competitively regulate tumor angiogenesis. Studies have demonstrated that Delta-like 4 functions as a negative regulator of tumor angiogenesis, whereas Jagged1 promotes angiogenesis. Understanding the implications of Notch signaling in various tumor backgrounds will enable the effects of specific Notch signaling inhibition on tumor angiogenesis and growth to be evaluated as a potential for a novel antiangiogenic therapy in the clinic.


Oncogene | 2017

The BET inhibitor JQ1 selectively impairs tumour response to hypoxia and downregulates CA9 and angiogenesis in triple negative breast cancer.

L L da Motta; Ioanna Ledaki; K Purshouse; Syed Haider; M A De Bastiani; Dilair Baban; M Morotti; Graham Steers; Simon Wigfield; Esther Bridges; J-L Li; Stefan Knapp; Daniel Ebner; Fábio Klamt; Adrian L. Harris; Alan McIntyre

The availability of bromodomain and extra-terminal inhibitors (BETi) has enabled translational epigenetic studies in cancer. BET proteins regulate transcription by selectively recognizing acetylated lysine residues on chromatin. BETi compete with this process leading to both downregulation and upregulation of gene expression. Hypoxia enables progression of triple negative breast cancer (TNBC), the most aggressive form of breast cancer, partly by driving metabolic adaptation, angiogenesis and metastasis through upregulation of hypoxia-regulated genes (for example, carbonic anhydrase 9 (CA9) and vascular endothelial growth factor A (VEGF-A). Responses to hypoxia can be mediated epigenetically, thus we investigated whether BETi JQ1 could impair the TNBC response induced by hypoxia and exert anti-tumour effects. JQ1 significantly modulated 44% of hypoxia-induced genes, of which two-thirds were downregulated including CA9 and VEGF-A. JQ1 prevented HIF binding to the hypoxia response element in CA9 promoter, but did not alter HIF expression or activity, suggesting some HIF targets are BET-dependent. JQ1 reduced TNBC growth in vitro and in vivo and inhibited xenograft vascularization. These findings identify that BETi dually targets angiogenesis and the hypoxic response, an effective combination at reducing tumour growth in preclinical studies.


Cancer Research | 2015

PI3K-mTORC2 but not PI3K-mTORC1 Regulates Transcription of HIF2A/EPAS1 and Vascularization in Neuroblastoma

Sofie Mohlin; Arash Hamidian; Kristoffer von Stedingk; Esther Bridges; Caroline Wigerup; Daniel Bexell; Sven Påhlman

Hypoxia-inducible factor (HIF) is a master regulator of cellular responses to oxygen deprival with a critical role in mediating the angiogenic switch in solid tumors. Differential expression of the HIF subunits HIF1α and HIF2α occurs in many human tumor types, suggesting selective implications to biologic context. For example, high expression of HIF2α that occurs in neuroblastoma is associated with stem cell-like features, disseminated disease, and poor clinical outcomes, suggesting pivotal significance for HIF2 control in neuroblastoma biology. In this study, we provide novel insights into how HIF2α expression is transcriptionally controlled by hypoxia and how this control is abrogated by inhibition of insulin-like growth factor-1R/INSR-driven phosphoinositide 3-kinase (PI3K) signaling. Reducing PI3K activity was sufficient to decrease HIF2α mRNA and protein expression in a manner with smaller and less vascularized tumors in vivo. PI3K-regulated HIF2A mRNA expression was independent of Akt or mTORC1 signaling but relied upon mTORC2 signaling. HIF2A mRNA was induced by hypoxia in neuroblastoma cells isolated from metastatic patient-derived tumor xenografts, where HIF2A levels could be reduced by treatment with PI3K and mTORC2 inhibitors. Our results suggest that targeting PI3K and mTORC2 in aggressive neuroblastomas with an immature phenotype may improve therapeutic efficacy.


Cancer Research | 2016

Disrupting hypoxia-induced bicarbonate transport acidifies tumor cells and suppresses tumor growth

Alan McIntyre; Alzbeta Hulikova; Ioanna Ledaki; Cameron Snell; Dean C. Singleton; Graham Steers; Peter T. Seden; Dylan Marc Jones; Esther Bridges; Simon Wigfield; Angela J. Russell; Pawel Swietach; Adrian L. Harris

Tumor hypoxia is associated clinically with therapeutic resistance and poor patient outcomes. One feature of tumor hypoxia is activated expression of carbonic anhydrase IX (CA9), a regulator of pH and tumor growth. In this study, we investigated the hypothesis that impeding the reuptake of bicarbonate produced extracellularly by CA9 could exacerbate the intracellular acidity produced by hypoxic conditions, perhaps compromising cell growth and viability as a result. In 8 of 10 cancer cell lines, we found that hypoxia induced the expression of at least one bicarbonate transporter. The most robust and frequent inductions were of the sodium-driven bicarbonate transporters SLC4A4 and SLC4A9, which rely upon both HIF1α and HIF2α activity for their expression. In cancer cell spheroids, SLC4A4 or SLC4A9 disruption by either genetic or pharmaceutical approaches acidified intracellular pH and reduced cell growth. Furthermore, treatment of spheroids with S0859, a small-molecule inhibitor of sodium-driven bicarbonate transporters, increased apoptosis in the cell lines tested. Finally, RNAi-mediated attenuation of SLC4A9 increased apoptosis in MDA-MB-231 breast cancer spheroids and dramatically reduced growth of MDA-MB-231 breast tumors or U87 gliomas in murine xenografts. Our findings suggest that disrupting pH homeostasis by blocking bicarbonate import might broadly relieve the common resistance of hypoxic tumors to anticancer therapy. Cancer Res; 76(13); 3744-55. ©2016 AACR.

Collaboration


Dive into the Esther Bridges's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Helen Turley

John Radcliffe Hospital

View shared research outputs
Top Co-Authors

Avatar

Russell Leek

John Radcliffe Hospital

View shared research outputs
Top Co-Authors

Avatar

Chern Ein Oon

Universiti Sains Malaysia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge