Esther Castillo-Gómez
University of Valencia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Esther Castillo-Gómez.
Neuropsychopharmacology | 2007
Emilio Varea; José Miguel Blasco-Ibáñez; María Ángeles Gómez-Climent; Esther Castillo-Gómez; Carlos Crespo; Francisco José Martínez-Guijarro; Juan Nacher
Recent hypotheses suggest that changes in neuronal structure and connectivity may underlie the etiology of depression. The medial prefrontal cortex (mPFC) is affected by depression and shows neuronal remodeling during adulthood. This plasticity may be mediated by the polysialylated form of the neural cell adhesion molecule (PSA-NCAM), which is intensely expressed in the adult mPFC. As the expression of PSA-NCAM is increased by serotonin in other cerebral regions, antidepressants acting on serotonin reuptake may influence PSA-NCAM expression and thus counteract the effects of depression by modulating neuronal structural plasticity. Using immunohistochemistry, we have studied the relationship between serotoninergic fibers and PSA-NCAM expressing neurons in the adult rat mPFC and the expression of serotonin receptors in these cells. The effects of fluoxetine treatment for 14 days on mPFC PSA-NCAM expression have also been analyzed. Although serotoninergic fibers usually do not contact PSA-NCAM immunoreactive neurons, most of these cells express 5-HT3 receptors. In general, chronic fluoxetine treatment induces significant increases in the number of PSA-NCAM immunoreactive neurons and in neuropil immunostaining and coadministration of the 5-HT3 antagonist ondansetron blocks the effects of fluoxetine on PSA-NCAM expression. These results indicate that fluoxetine, acting through 5-HT3 receptors, can modulate PSA-NCAM expression in the mPFC. This modulation may mediate the structural plasticity of this cortical region and opens new perspectives on the study of the molecular bases of depression.
Cerebral Cortex | 2008
María Ángeles Gómez-Climent; Esther Castillo-Gómez; Emilio Varea; Ramon Guirado; José Miguel Blasco-Ibáñez; Carlos Crespo; Francisco José Martínez-Guijarro; Juan Nacher
New neurons in the adult brain transiently express molecules related to neuronal development, such as the polysialylated form of neural cell adhesion molecule, or doublecortin (DCX). These molecules are also expressed by a cell population in the rat paleocortex layer II, whose origin, phenotype, and function are not clearly understood. We have classified most of these cells as a new cell type termed tangled cell. Some cells with the morphology of semilunar-pyramidal transitional neurons were also found among this population, as well as some scarce cells resembling semilunar, pyramidal. and fusiform neurons. We have found that none of these cells in layer II express markers of glial cells, mature, inhibitory, or principal neurons. They appear to be in a prolonged immature state, confirmed by the coexpression of DCX, TOAD/Ulip/CRMP-4, A3 subunit of the cyclic nucleotide-gated channel, or phosphorylated cyclic adenosine monophosphate response element-binding protein. Moreover, most of them lack synaptic contacts, are covered by astroglial lamellae, and fail to express cellular activity markers, such as c-Fos or Arc, and N-methyl-d-aspartate or glucocorticoid receptors. We have found that none of these cells appear to be generated during adulthood or early youth and that most of them have been generated during embryonic development, mainly in E15.5.
Journal of Neuroscience Research | 2005
Juan Nacher; Emilio Varea; José Miguel Blasco-Ibáñez; Esther Castillo-Gómez; Carlos Crespo; Francisco José Martínez-Guijarro; Bruce S. McEwen
The transcription factor Pax6 is expressed in precursor cells during embryonic CNS development, and it plays an important role in the regulation of cell proliferation and neuronal fate determination. Pax6‐expressing cells are also present in the adult hippocampal dentate gyrus and subventricular zone/rostral migratory stream, regions in which neuronal precursors exist during adult life. In the adult dentate gyrus, precursor cells are located in the innermost portion of the granule cell layer, and Pax6‐expressing nuclei are most abundant in this region. To examine the putative role of Pax6 in adult hippocampal neurogenesis, we have studied the proliferative activity, distribution, and phenotype of Pax6‐expressing cells by using immunohistochemistry. Our results indicate that Pax6 is intensely expressed in proliferating precursors of the adult dentate gyrus. Pax6 is also expressed in nonproliferating cells, which may correspond to resting progenitor cells and to granule neurons in their very early developmental stages, because this transcription factor is strongly down‐regulated during granule neuron differentiation. However, a small subpopulation of hilar mature neurons and certain astrocytes of the adult hippocampus also express Pax6. Although the precise roles of this transcription factor in the adult brain remain to be determined, our findings support the idea that its function in the control of cell proliferation and neuronal fate determination during embryogenesis is also operative in the adult hippocampus. However, the expression of Pax6 in astrocytes and certain mature neurons may indicate the existence of other roles for this transcription factor in this telencephalic region.
Experimental Neurology | 2011
Javier Gilabert-Juan; Esther Castillo-Gómez; Marta Perez-Rando; María Dolores Moltó; Juan Nacher
Chronic stress in experimental animals, one of the most accepted models of chronic anxiety and depression, induces structural remodeling of principal neurons in the amygdala and increases its excitation by reducing inhibitory tone. These changes may be mediated by the polysialylated form of the neural cell adhesion molecule (PSA-NCAM), a molecule related to neuronal structural plasticity and expressed by interneurons in the adult CNS, which is downregulated in the amygdala after chronic stress. We have analyzed the amygdala of adult mice after 21 days of restraint stress, studying with qRT-PCR the expression of genes related to general and inhibitory neurotransmission, and of PSA synthesizing enzymes. The expression of GAD67, synaptophysin and PSA-NCAM was also studied in specific amygdaloid nuclei using immunohistochemistry. We also analyzed dendritic arborization and spine density, and cell activity, monitoring c-Fos expression, in amygdaloid interneurons. At the mRNA level, the expression of GAD67 and of St8SiaII was significantly reduced. At the protein level there was an overall reduction in the expression of GAD67, synaptophysin and PSA-NCAM, but significant changes were only detected in specific amygdaloid regions. Chronic stress did not affect dendritic spine density, but reduced dendritic arborization in interneurons of the lateral and basolateral amygdala. These results indicate that chronic stress modulates inhibitory neurotransmission in the amygdala by regulating the expression of molecules involved in this process and by promoting the structural remodeling of interneurons. The addition of PSA to NCAM by St8SiaII may be involved in these changes.
Cerebral Cortex | 2011
María Ángeles Gómez-Climent; Ramon Guirado; Esther Castillo-Gómez; Emilio Varea; Maria Gutierrez-Mecinas; Javier Gilabert-Juan; Clara García-Mompó; David Sanchez-Mataredona; Samuel Hernández; José Miguel Blasco-Ibáñez; Carlos Crespo; Urs Rutishauser; Melitta Schachner; Juan Nacher
Principal neurons in the adult cerebral cortex undergo synaptic, dendritic, and spine remodeling in response to different stimuli, and several reports have demonstrated that the polysialylated form of the neural cell adhesion molecule (PSA-NCAM) participates in these plastic processes. However, there is only limited information on the expression of this molecule on interneurons and on its role in the structural plasticity of these cells. We have found that PSA-NCAM is expressed in mature interneurons widely distributed in all the extension of the cerebral cortex and have excluded the expression of this molecule in most principal cells. Although PSA-NCAM expression is generally considered a marker of immature neurons, birth-dating analyses reveal that these interneurons do not have an adult or perinatal origin and that they are generated during embryonic development. PSA-NCAM expressing interneurons show reduced density of perisomatic and peridendritic puncta expressing different synaptic markers and receive less perisomatic synapses, when compared with interneurons lacking this molecule. Moreover, they have reduced dendritic arborization and spine density. These data indicate that PSA-NCAM expression is important for the connectivity of interneurons in the adult cerebral cortex and that its regulation may play an important role in the structural plasticity of inhibitory networks.
European Neuropsychopharmacology | 2007
Emilio Varea; Esther Castillo-Gómez; María Ángeles Gómez-Climent; J.M. Blasco-Ibáñez; Carlos Crespo; F.J. Martínez-Guijarro; Juan Nacher
Structural modifications occur in the brain of severely depressed patients and they can be reversed by antidepressant treatment. Some of these changes do not occur in the same direction in different regions, such as the medial prefrontal cortex, the hippocampus or the amygdala. Differential structural plasticity also occurs in animal models of depression and it is also prevented by antidepressants. In order to know whether chronic fluoxetine treatment induces differential neuronal structural plasticity in rats, we have analyzed the expression of synaptophysin, a protein considered a marker of synaptic density, and the expression of the polysialylated form of the neural cell adhesion molecule (PSA-NCAM), a molecule involved in neurite and synaptic remodeling. Chronic fluoxetine treatment increases synaptophysin and PSA-NCAM expression in the medial prefrontal cortex and decreases them in the amygdala. The expression of these molecules is also affected in the entorhinal, the visual and the somatosensory cortices.
Journal of Psychiatric Research | 2012
Emilio Varea; Ramon Guirado; Javier Gilabert-Juan; Ulisses Martí; Esther Castillo-Gómez; José Miguel Blasco-Ibáñez; Carlos Crespo; Juan Nacher
Neuroimaging has revealed structural abnormalities in the amygdala of different psychiatric disorders. The polysialylated neural cell adhesion molecule (PSA-NCAM), a molecule related to neuronal structural plasticity, which expression is altered in schizophrenia, major depression and in animal models of these disorders, may participate in these changes. However, PSA-NCAM has not been studied in the human amygdala. To know whether its expression and that of presynaptic markers, was affected in psychiatric disorders, we have analyzed post-mortem sections from the Stanley Neuropathology Consortium, which includes controls, schizophrenia, bipolar and major depression patients. PSA-NCAM was expressed in neuronal somata and neuropil puncta, many of which corresponded to interneurons. Depressed patients showed decreases in PSA-NCAM expression in the basolateral and basomedial amygdala; synaptophysin and GAD67 were also decreased, while VGLUT-1 was increased, in different nuclei. Increases in PSA-NCAM expression were found in the lateral nucleus of bipolar patients; synaptophysin and GAD67 were reduced, and VGLUT-1 increased, in their basolateral and lateral nuclei. The expression of synaptophysin and GAD67 was downregulated in the basolateral nucleus of schizophrenics. These results indicate that inhibitory and excitatory amygdaloid circuits are affected in these disorders and that abnormal PSA-NCAM expression in depressive and bipolar patients may underlie these alterations.
Journal of Chemical Neuroanatomy | 2007
Emilio Varea; Esther Castillo-Gómez; María Ángeles Gómez-Climent; José Miguel Blasco-Ibáñez; Carlos Crespo; Francisco José Martínez-Guijarro; Juan Nacher
The prefrontal cortex (PFC) of adult rodents is capable of undergoing neuronal remodeling and neuroimaging studies in humans have revealed that the structure of this region also appears affected in different psychiatric disorders. However, the cellular mechanisms underlying this plasticity are still unclear. The polysialylated form of the neural cell adhesion molecule (PSA-NCAM) may mediate these structural changes through its anti-adhesive properties. PSA-NCAM participates in neurite outgrowth and synaptogenesis and changes in its expression occur parallel to neuronal remodeling in certain regions of the adult brain. PSA-NCAM is expressed in the hippocampus and temporal cortex of adult humans, but it has not been studied in the PFC. Employing immunohistochemistry on sections from the rostromedial superior frontal gyrus we have found that PSA-NCAM is expressed in the human PFC neuropil following a laminated pattern and in a subpopulation of mature neurons, which lack doublecortin expression. Most of these cells have been identified as interneurons expressing calbindin. The expression of PSA-NCAM in the human PFC is similar to that of rodents. Since this molecule has been linked to the neuronal remodeling found in experimental models of depression, it may also participate in the structural plasticity described in the PFC of depressed patients.
Neurochemical Research | 2013
Juan Nacher; Ramon Guirado; Esther Castillo-Gómez
Neuronal structural plasticity is known to have a major role in cognitive processes and in the response of the CNS to aversive experiences. This type of plasticity involves processes ranging from neurite outgrowth/retraction or dendritic spine remodeling, to the incorporation of new neurons to the established circuitry. However, the study of how these structural changes take place has been focused mainly on excitatory neurons, while little attention has been paid to interneurons. The exploration of these plastic phenomena in interneurons is very important, not only for our knowledge of CNS physiology, but also for understanding better the etiology of different psychiatric and neurological disorders in which alterations in the structure and connectivity of inhibitory networks have been described. Here we review recent work on the structural remodeling of interneurons in the adult brain, both in basal conditions and after chronic stress or sensory deprivation. We also describe studies from our laboratory and others on the putative mediators of this interneuronal structural plasticity, focusing on the polysialylated form of the neural cell adhesion molecule (PSA-NCAM). This molecule is expressed by some interneurons in the adult CNS and, through its anti-adhesive and insulating properties, may participate in the remodeling of their structure. Finally, we review recent findings on the possible implication of PSA-NCAM on the remodeling of inhibitory neurons in certain psychiatric disorders and their treatments.
Neuroscience Letters | 2009
Ramon Guirado; Emilio Varea; Esther Castillo-Gómez; María Ángeles Gómez-Climent; Laura Rovira-Esteban; J.M. Blasco-Ibáñez; Carlos Crespo; F.J. Martínez-Guijarro; Juan Nacher
Recent hypotheses support the idea that disruption of normal neuronal plasticity mechanisms underlies depression and other psychiatric disorders, and that antidepressant treatment may counteract these changes. In a previous report we found that chronic fluoxetine treatment increases the expression of the polysialylated form of the neural cell adhesion molecule (PSA-NCAM), a molecule involved in neuronal structural plasticity, in the somatosensory cortex. In the present study we intended to find whether, in fact, cell activation and neuronal structural remodeling occur in parallel to changes in the expression of this molecule. Using immunohistochemistry, we found that chronic fluoxetine treatment caused an increase in the expression of the early expression gene c-fos. Golgi staining revealed that this treatment also increased spine density in the principal apical dendrite of pyramidal neurons. These results indicate that, apart from the medial prefrontal cortex or the hippocampus, other cortical regions can respond to chronic antidepressant treatment undergoing neuronal structural plasticity.