Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Esther Dalfó is active.

Publication


Featured researches published by Esther Dalfó.


Journal of Biological Chemistry | 2005

Proteins in Human Brain Cortex Are Modified by Oxidation, Glycoxidation, and Lipoxidation EFFECTS OF ALZHEIMER DISEASE AND IDENTIFICATION OF LIPOXIDATION TARGETS

Reinald Pamplona; Esther Dalfó; Victoria Ayala; Maria Josep Bellmunt; Joan Prat; Isidre Ferrer; Manuel Portero-Otin

Diverse oxidative pathways, such as direct oxidation of amino acids, glycoxidation, and lipoxidation could contribute to Alzheimer disease pathogenesis. A global survey for the amount of structurally characterized probes for these reactions is lacking and could overcome the lack of specificity derived from measurement of 2,4-dinitrophenylhydrazine reactive carbonyls. Consequently we analyzed (i) the presence and concentrations of glutamic and aminoadipic semialdehydes, Nϵ-(carboxymethyl)-lysine, Nϵ-(carboxyethyl)-lysine, and Nϵ-(malondialdehyde)-lysine by means of gas chromatography/mass spectrometry, (ii) the biological response through expression of the receptor for advanced glycation end products, (iii) the fatty acid composition in brain samples from Alzheimer disease patients and agematched controls, and (iv) the targets of Nϵ-(malondialdehyde)-lysine formation in brain cortex by proteomic techniques. Alzheimer disease was associated with significant, although heterogeneous, increases in the concentrations of all evaluated markers. Alzheimer disease samples presented increases in expression of the receptor for advanced glycation end products with high molecular heterogeneity. Samples from Alzheimer disease patients also showed content of docosahexaenoic acid, which increased lipid peroxidizability. In accordance, Nϵ-(malondialdehyde)-lysine formation targeted important proteins for both glial and neuronal homeostasis such as neurofilament L, α-tubulin, glial fibrillary acidic protein, ubiquinol-cytochrome c reductase complex protein I, and the β chain of ATP synthase. These data support an important role for lipid peroxidation-derived protein modifications in Alzheimer disease pathogenesis.


Journal of Neuropathology and Experimental Neurology | 2005

Evidence of oxidative stress in the neocortex in incidental Lewy body disease.

Esther Dalfó; Manuel Portero-Otin; Victoria Ayala; Anna Martínez; Reinald Pamplona; Isidre Ferrer

Oxidative stress has been well documented in the substantia nigra in Parkinson disease (PD), but little is known about oxidative damage, particularly lipoxidation, advanced glycation (AGE), and AGE receptors (RAGE) in other structures, including the cerebral cortex, in early stages of diseases with Lewy bodies. The present study was undertaken to analyze these parameters in the frontal cortex (area 8), amygdala, and substantia nigra in selected cases with no neurologic symptoms and with neuropathologically verified incidental Lewy body disease-related changes, comparing them with healthy age-matched individuals. Results of the present study have shown mass spectrometric and immunologic evidences of increased lipoxidative damage by the markers malondialdehyde-lysine (MDAL) and 4-hydroxynonenal-lysine (HNE), increased expression of AGE in the substantia nigra, amygdala, and frontal cortex, and increased and heterogeneous RAGE cellular expression in the substantia nigra and frontal cortex in cases with early stages of parkinsonian neuropathology. In addition, increased content of the highly peroxidizable docosahexaenoic acid in the amygdala and frontal cortex. These changes were not associated to α-synuclein aggregation in cortex, contrasting with aggregates found in SDS-soluble fractions of frontal cortex in dementia with Lewy bodies (DLB) cases. The pattern of lipidic abnormalities differed in DLB and incidental Lewy body disease. Furthermore, although AGE and RAGE expression were raised in DLB, no increase in the total amount of HNE and MDAL adducts was found in the cerebral cortex in DLB. Preliminary analyses have identified 2 proteins with lipoxidative damage, α-synuclein and manganese superoxide dismutase (SOD2), in incidentally Lewy body disease cortex. This study demonstrates abnormal fatty acid profiles, increased and selective lipoxidative damage, and increased AGE and RAGE expression in the frontal cortex in cases with early stages of parkinsonian neuropathology without treatment. These findings further support antioxidant therapy in the treatment of PD to reduce cortical damage associated with oxidative stress.


Neuroscience | 2008

Phosphorylation of tau and α-synuclein in synaptic-enriched fractions of the frontal cortex in Alzheimer’s disease, and in Parkinson’s disease and related α-synucleinopathies

G. Muntané; Esther Dalfó; Albert Martínez; Isidre Ferrer

Phosphorylation of tau and phosphorylation of alpha-synuclein are crucial abnormalities in Alzheimers disease (AD) and alpha-synucleinopathies (Parkinsons disease: PD, and dementia with Lewy bodies: DLB), respectively. The presence and distribution of phospho-tau were examined by sub-fractionation, gel electrophoresis and Western blotting in the frontal cortex of cases with AD at different stages of disease progression, PD, DLB pure form and common form, and in age-matched controls. Phospho-tauSer396 has been found in synaptic-enriched fractions in AD frontal cortex at entorhinal/transentorhinal, limbic and neocortical stages, thus indicating early tau phosphorylation at the synapses in AD before the occurrence of neurofibrillary tangles in the frontal cortex. Phospho-tauSer396 is also found in synaptic-enriched fractions in the frontal cortex in PD and DLB pure and common forms, thus indicating increased tau phosphorylation at the synapses in these alpha-synucleinopathies. Densitometric studies show between 20% and 40% phospho-tauSer396, in relation with tau-13, in synaptic-enriched fractions of the frontal cortex in AD stages I-III, and in PD and DLB. The percentage reaches about 95% in AD stage V and DLB common form. Yet tau phosphorylation characteristic of neurofibrillary tangles, as revealed with the AT8 antibody, is found in the synaptic fractions of the frontal cortex only at advanced stages of AD. Increased phosphorylated alpha-synucleinSer129 levels are observed in the synaptic-enriched fractions of the frontal cortex in PD and DLB pure and common forms, and in advanced stages of AD. Since tau-hyperphosphorylation has implications in microtubule assembly, and phosphorylation of alpha-synuclein at Ser129 favors alpha-synuclein aggregation, it can be suggested that synapses are targets of abnormal tau and alpha-synuclein phosphorylation in both groups of diseases. Tau phosphorylation at Ser396 has also been found in synaptic-enriched fractions in 12-month-old transgenic mice bearing the A53T alpha-synuclein mutation.


Neurobiology of Aging | 2006

Increased sensitivity to MPTP in human alpha-synuclein A30P transgenic mice.

María Nieto; Francisco J. Gil-Bea; Esther Dalfó; Mar Cuadrado; Felipe Cabodevilla; Belén Sánchez; Silvia Catena; Teresa Sesma; Elena M. Ribe; Isidro Ferrer; Maria J. Ramirez; Teresa Gomez-Isla

In addition to genetic factors, environmental factors have long been suspected to contribute to the pathogenesis of Parkinsons disease (PD). We investigated the possible interaction between genetic factors and neurotoxins by testing whether alpha-synuclein A30P Tg5093 transgenic mice show increased sensitivity to secondary toxic insults like 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or rotenone. While sensitivity to chronic treatment with rotenone was not enhanced in the Tg5093 line, chronic treatment with 80 or 150 mg/kg MPTP resulted in increased deterioration of the nigrostriatal dopaminergic system as assessed by quantitation of nigral tyrosine hydroxylase (TH) positive neurons and striatal dopamine (DA) levels in Tg5093 mice when compared to non-transgenic littermate controls. Thus, the results of this study demonstrate a role for the overexpression of mutant human alpha-synuclein A30P in increased vulnerability of DA neurons to MPTP.


Neuropathology and Applied Neurobiology | 2003

Caspase-dependent and caspase-independent signalling of apoptosis in the penumbra following middle cerebral artery occlusion in the adult rat

Isidre Ferrer; Bibiana Friguls; Esther Dalfó; Carles Justicia; Anna M. Planas

Transient focal ischaemia by middle cerebral artery occlusion (MCAO) may produce cell death, but the mechanisms leading to cell death differ in the infarct core and in the penumbra, the immediate zone surrounding the infarct core. In the present study, transient focal ischaemia to adult rats was produced by intraluminal occlusion of the middle cerebral artery for 1 h followed by 0 h (n = 6), 1 h (n = 10), 4 h (n = 8), 6 h (n = 2) and 12 h (n = 3) of reperfusion. The present model of ischaemia causes a large cortico‐striatal infarct extending through the mediolateral cortex and dorsolateral striatum at 12 h. The expression and subcellular distribution of several proteins involved in apoptosis have been examined in the penumbra and in the infarct core by using combined methods of immunohistochemistry, cell subfractionation and Western blotting. Transient focal ischaemia by MCAO results in activation of complex signal pathways for cell death in the penumbra. Increased expression of Bcl‐2 and Bax, but not of Bcl‐x, occurs in the penumbra at the time when Bax translocates from the cytosol to the mitochondria, cytochrome c is released to the cytoplasm and active caspase‐3 is expressed. Bax translocation, cytochrome c release and active caspase‐3 are observed at 4 h, but not at 1 h, following reperfusion, and together indicate activation of the caspase‐dependent pathway of apoptosis in the penumbra. In contrast, reduced Bax expression but not Bax translocation and cytochrome c release occurs in the infarct core, thus suggesting apoptosis signals restricted to the penumbra. In addition, increased expression of an apoptosis‐inducing factor in the cytoplasm and nuclei of selected cells shows, for the first time, activation of the caspase‐independent mitochondrial pathway in the penumbra following transient focal ischaemia and reperfusion.


Neurobiology of Disease | 2005

Impaired metabotropic glutamate receptor/phospholipase C signaling pathway in the cerebral cortex in Alzheimer's disease and dementia with Lewy bodies correlates with stage of Alzheimer's-disease-related changes

José Luis Albasanz; Esther Dalfó; Isidro Ferrer; Mairena Martín

The aim of the present work was to analyze the status of metabotropic glutamate receptors (mGluRs) in the frontal cortex (area 8) from ten cases with common form DLB (cDLB) and eleven cases with pure AD in comparison with five age-matched controls. mGluRs, determined by radioligand binding assays, were significantly decreased in cerebral cortex in cDLB. This decrease was already present in cases with early AD changes not involving the frontal cortex, but dramatically correlated with AD neuropathological changes, at its greatest in isocortical stages, which was associated with a decrease in the expression levels of mGluR1 detected by Western blotting. Moreover, mGluRs analyzed in pure AD were lower than those obtained in cDLB and also correlated with progression of illness. On the other hand, the expression levels of phospholipase Cbeta1 (PLCbeta1) isoform, which is the effector of group I mGluRs, was decreased in parallel in cDLB cases. Finally, the PLCbeta1 decrease was associated with reduced GTP- and l-glutamate-stimulated PLC activity in both cDLB and AD cases. These results show that group I mGluRs/PLC signaling are down-regulated and desensitized in the frontal cortex in cDLB and AD cases and that these modifications worsen with progression of AD changes in the cerebral neocortex. Therefore, group I mGluR dysfunction may be implicated in the pathogenesis of cognitive impairment and dementia in common form of DLB and pure AD.


Neurobiology of Disease | 2004

Abnormal α-synuclein interactions with rab3a and rabphilin in diffuse Lewy body disease

Esther Dalfó; Marta Barrachina; J.L. Rosa; Santiago Ambrosio; Isidre Ferrer

The present study examines alpha-synuclein interactions with rab3a and rabphilin by antibody arrays, immunoprecipitation and pull-down methods in the entorhinal cortex of control cases and in diffuse Lewy body disease (LBD) cases. Alpha-synuclein immunoprecipitation revealed alpha-synuclein binding to rabphilin in control but not in LB cases. Immunoprecipitation with rab3a disclosed rab3a binding to rabphilin in control but not in LB cases. Moreover, rab3a interacted with high molecular weight (66 kDa) alpha-synuclein only in LB cases, in agreement with parallel studies using antibody arrays. Results were compared with pull-down assays using His(6)/Flag-tagged rab3, rab5 and rab8, and anti-Flag immunoblotting. Weak bands of 17 kDa, corresponding to alpha-synuclein, were obtained in LB and, less intensely, in control cases. In addition, alpha-synuclein-immunoreactive bands of high molecular weight (36 kDa) were seen only in LB cases after pull-down assays with rab3a, rab5 or rab8. These findings corroborate previous observations showing rab3a-rabphilin interactions in control brains, and add substantial information regarding decreased binding of rab3a to rabphilin and increased binding of rab3a to alpha-synuclein aggregates in LB cases. Since, alpha-synuclein, rab3a and rabphilin participate in the docking and fusion of synaptic vesicles, it can be suggested that exocytosis of neurotransmitters may be impaired in LB diseases.


Neurobiology of Aging | 2006

Oxidation, glycoxidation, lipoxidation, nitration, and responses to oxidative stress in the cerebral cortex in Creutzfeldt-Jakob disease

M. Freixes; Agustín Rodríguez; Esther Dalfó; Isidro Ferrer

Gel electrophoresis and Western blotting of frontal cortex homogenates have been carried out in sporadic Creutzfeldt-Jakob disease (CJD) cases and age-matched controls to gain understanding of the expression of glycation-end products (AGEs). N-Carboxymethyl-lysine (CML) and N-carboxyethyl-lysine (CEL) were used as markers of glycoxidation; 4-hydroxynonenal (4-HNE) and malondialdehyde-lysine (MDAL) as markers of lipoxidation; and nitrotyrosine (N-tyr) and neuronal, endothelial and inducible nitric oxide synthase (nNOS, eNos and iNos) as markers of protein nitration and as sources of NO production, respectively. Age receptor (RAGE) and Cu/Zn superoxide dismutase (SOD1) and Mn superoxide dismutase (SOD2) expression levels were also examined. The results showed a significant increase in the expression levels of AGE (p<0.05), CEL (p<0.001), RAGE (p<0.05), HNE-modified proteins (p<0.01), nNOS, iNOS and eNOS (p<0.01 and p<0.05, respectively), N-tyr (p<0.05), and SOD1 (p<0.05) and SOD2 (p<0.05). No relationship was observed between PrP genotype, PrP type, PrP burden, and expression levels of oxidative stress markers. The present findings demonstrate oxidative, glycoxidative, lipoxidative and nitrative protein damage, accompanied by increased oxidative responses, in the cerebral cortex in sporadic CJD. These results provide support for the concept that oxidative stress may have important implications in the pathogenesis of prion diseases.


Neuropathology and Applied Neurobiology | 2004

Expression of stress-activated kinases c-Jun N-terminal kinase (SAPK/JNK-P) and p38 kinase (p38-P), and tau hyperphosphorylation in neurites surrounding betaA plaques in APP Tg2576 mice.

B. Puig; Teresa Gomez-Isla; Elena M. Ribe; Mar Cuadrado; Benjamín Torrejón-Escribano; Esther Dalfó; Isidre Ferrer

Hyperphosphorylated tau in neurites surrounding β‐amyloid (βA) deposits, as revealed with phospho‐specific anti‐tau antibodies, are found in amyloid precursor protein (APP) Tg2576 mice. Because βA is a source of oxidative stress and may be toxic for cultured cells, the present study examines the expression of phosphorylated (active) stress‐activated kinase c‐Jun N‐terminal kinase (SAPK/JNK‐P) and p38 kinase (p38‐P), which have the capacity to phosphorylate tau at specific sites, and their specific substrates c‐Jun and ATF‐2, which are involved in cell death and survival in several paradigms, in Tg2576 mice. The study was planned to shed light about the involvement of these kinases in tau phosphorylation in cell processes surrounding amyloid plaques, as well as in the possible phosphorylation (activation) of c‐Jun and activating transcription factor‐2 (ATF‐2) in relation to βA deposition. Moderate increase in the expression of phosphorylated mitogen‐activated protein kinase and extracelullar signal‐regulated kinase (MAPK/ERK‐P) occurs in a few amyloid plaques. However, strong expression of SAPK/JNK‐P and p38‐P is found in the majority of, if not all, amyloid plaques, as seen in serial consecutive sections stained for βA and stress kinases. Moreover, confocal microscopy reveals colocalization of phospho‐tau and SAPK/JNK‐P, and phospho‐tau and p38‐P in many dystrophic neurites surrounding amyloid plaques. Increased expression levels of nonbound tau, SAPK/JNK‐P and p38‐P are corroborated by Western blots of total cortical homogenate supernatants in Tg2576 mice when compared with age‐matched controls. No increase in phosphorylated c‐JunSer63 (c‐Jun‐P) and ATF‐2Thr71 (ATF‐2‐P) is found in association with βA deposits. In addition, no expression of active (cleaved) caspase‐3 (17 kDa) has been found in transgenic mice. Taken together, these observations provide a link between βA‐induced oxidative stress, activation of stress kinases SAPK/JNK and p38, and tau hyperphosphorylation in neurites surrounding amyloid plaques, but activation of these kinases is not associated with accumulation of c‐Jun‐P and ATF‐2‐P, nor with activation of active caspase‐3 in the vicinity of βA deposits.


Journal of Neuropathology and Experimental Neurology | 2014

Glial and neuronal tau pathology in tauopathies: characterization of disease-specific phenotypes and tau pathology progression.

Isidre Ferrer; Irene López-González; Margarita Carmona; Laura Arregui; Esther Dalfó; Benjamín Torrejón-Escribano; Roberta Diehl; Gabor G. Kovacs

Tauopathies are degenerative diseases characterized by the accumulation of phosphorylated tau in neurons and glial cells. With some exceptions, tau deposits in neurons are mainly manifested as pretangles and tangles unrelated to the tauopathy. It is thought that abnormal tau deposition in neurons occurs following specific steps, but little is known about the progression of tau pathology in glial cells in tauopathies. We compared tau pathology in different astrocyte phenotypes and oligodendroglial inclusions with that in neurons in a large series of tauopathies, including progressive supranuclear palsy, corticobasal degeneration, argyrophilic grain disease, Pick disease, frontotemporal lobar degenerations (FTLD) associated with mutations in the tau gene, globular glial tauopathy (GGT), and tauopathy in the elderly. Our findings indicate that disease-specific astroglial phenotypes depend on i) the primary amino acid sequence of tau (mutated tau, 3Rtau, and 4Rtau); ii) phospho-specific sites of tau phosphorylation, tau conformation, tau truncation, and ubiquitination in that order (which parallel tau modifications related to pretangle and tangle stages in neurons); and iii) modifications of the astroglial cytoskeleton. In contrast to astrocytes, coiled bodies in oligodendrocytes have similar characteristics whatever the tauopathy, except glial globular inclusions in GGT, and coiled bodies and globular oligodendroglial inclusions in FTLD-tau/K317M. These observations indicate that tau pathology in glial cells largely parallels, but is not identical to, that in neurons in many tauopathies.

Collaboration


Dive into the Esther Dalfó's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Antonio Miranda-Vizuete

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Aurora Pujol

Catalan Institution for Research and Advanced Studies

View shared research outputs
Researchain Logo
Decentralizing Knowledge