Esther K. Schmitt
Novartis
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Esther K. Schmitt.
Science | 2010
Matthias Rottmann; Case W. McNamara; Bryan K. S. Yeung; Marcus C. S. Lee; Bin Zou; Bruce Russell; Patrick Seitz; David Plouffe; Neekesh V. Dharia; Jocelyn Tan; Steven B. Cohen; Kathryn R. Spencer; Gonzalo E. González-Páez; Suresh B. Lakshminarayana; Anne Goh; Rossarin Suwanarusk; Timothy Jegla; Esther K. Schmitt; Hans-Peter Beck; Reto Brun; François Nosten; Laurent Rénia; Véronique Dartois; Thomas H. Keller; David A. Fidock; Elizabeth A. Winzeler; Thierry T. Diagana
Antimalarial Drug Candidate Spiroindolones were discovered as promising antimalarial drug candidates through a high-throughput screening approach that should be applicable to a range of neglected infectious diseases. Rottmann et al. (p. 1175; see the Perspective by Wells) present the preclinical profile for an optimized spiroindolone drug candidate, NITD609. They obtained evidence for a decrease in drug sensitivity in strains of the malaria parasite Plasmodium falciparum bearing amino acid mutations in the P-type ATPase, indicating possible mechanisms of action and/or resistance. High-throughput screening has offered up an oral antimalarial drug and pointers to its mechanism of action. Recent reports of increased tolerance to artemisinin derivatives—the most recently adopted class of antimalarials—have prompted a need for new treatments. The spirotetrahydro-β-carbolines, or spiroindolones, are potent drugs that kill the blood stages of Plasmodium falciparum and Plasmodium vivax clinical isolates at low nanomolar concentration. Spiroindolones rapidly inhibit protein synthesis in P. falciparum, an effect that is ablated in parasites bearing nonsynonymous mutations in the gene encoding the P-type cation-transporter ATPase4 (PfATP4). The optimized spiroindolone NITD609 shows pharmacokinetic properties compatible with once-daily oral dosing and has single-dose efficacy in a rodent malaria model.
Journal of Medicinal Chemistry | 2010
Bryan K. S. Yeung; Bin Zou; Matthias Rottmann; Suresh B. Lakshminarayana; Shi Hua Ang; Seh Yong Leong; Jocelyn Tan; Josephine Wong; Sonja Keller-Maerki; Christoph Fischli; Anne Goh; Esther K. Schmitt; Philipp Krastel; Eric Francotte; Kelli Kuhen; David Plouffe; Kerstin Henson; Trixie Wagner; Elizabeth A. Winzeler; Frank Petersen; Reto Brun; Véronique Dartois; Thierry T. Diagana; Thomas H. Keller
The antiplasmodial activity of a series of spirotetrahydro β-carbolines is described. Racemic spiroazepineindole (1) was identified from a phenotypic screen on wild type Plasmodium falciparum with an in vitro IC50 of 90 nM. Structure−activity relationships for the optimization of 1 to compound 20a (IC50 = 0.2 nM) including the identification of the active 1R,3S enantiomer and elimination of metabolic liabilities is presented. Improvement of the pharmacokinetic profile of the series translated to exceptional oral efficacy in the P. berghei infected malaria mouse model where full cure was achieved in four of five mice with three daily doses of 30 mg/kg.
Journal of the American Chemical Society | 2009
Rowan P. Morris; Jennifer A. Leeds; Hans Ulrich Naegeli; Lukas Oberer; Klaus Memmert; Eric J. Weber; Matthew J. LaMarche; Christian N. Parker; Nathalie Burrer; Stacey Esterow; Andreas E. Hein; Esther K. Schmitt; Philipp Krastel
We identified the thiomuracins, a novel family of thiopeptides produced by a rare-actinomycete bacterium typed as a Nonomuraea species, via a screen for inhibition of growth of the bacterial pathogen Staphylococcus aureus. Thiopeptides are a class of macrocyclic, highly modified peptides that are decorated by thiazoles and defined by a central six-membered heterocyclic ring system. Mining the genomes of thiopeptide-producing strains revealed the elusive biosynthetic route for this class of antibiotics. The thiopeptides are chromosomally encoded, ribosomally synthesized proteins, and isolation of gene clusters for production of thiomuracin and the related thiopeptide GE2270A revealed the post-translational machinery required for maturation. The target of the thiomuracins was identified as bacterial Elongation Factor Tu (EF-Tu). In addition to potently inhibiting a target that is unexploited by marketed human therapeutics, the thiomuracins have a low propensity for selecting for antibiotic resistance and confer no measurable cross-resistance to antibiotics in clinical use.
Cell Host & Microbe | 2012
Dominic Hoepfner; Case W. McNamara; Chek Shik Lim; Christian Studer; Ralph Riedl; Thomas Aust; Susan McCormack; David Plouffe; Stephan Meister; Sven Schuierer; Uwe Plikat; Nicole Hartmann; Frank Staedtler; Simona Cotesta; Esther K. Schmitt; Frank Petersen; Frantisek Supek; Richard Glynne; John A. Tallarico; Jeffrey A. Porter; Mark C. Fishman; Christophe Bodenreider; Thierry T. Diagana; N. Rao Movva; Elizabeth A. Winzeler
Summary With renewed calls for malaria eradication, next-generation antimalarials need be active against drug-resistant parasites and efficacious against both liver- and blood-stage infections. We screened a natural product library to identify inhibitors of Plasmodium falciparum blood- and liver-stage proliferation. Cladosporin, a fungal secondary metabolite whose target and mechanism of action are not known for any species, was identified as having potent, nanomolar, antiparasitic activity against both blood and liver stages. Using postgenomic methods, including a yeast deletion strains collection, we show that cladosporin specifically inhibits protein synthesis by directly targeting P. falciparum cytosolic lysyl-tRNA synthetase. Further, cladosporin is >100-fold more potent against parasite lysyl-tRNA synthetase relative to the human enzyme, which is conferred by the identity of two amino acids within the enzyme active site. Our data indicate that lysyl-tRNA synthetase is an attractive, druggable, antimalarial target that can be selectively inhibited.
Microbiological Research | 2014
Dominic Hoepfner; Stephen B. Helliwell; Heather Sadlish; Sven Schuierer; Ireos Filipuzzi; Sophie Brachat; Bhupinder Bhullar; Uwe Plikat; Yann Abraham; Marc Altorfer; Thomas Aust; Lukas Baeriswyl; Raffaele Cerino; Lena Chang; David Estoppey; Juerg Eichenberger; Mathias Frederiksen; Nicole Hartmann; Annika Hohendahl; Britta Knapp; Philipp Krastel; Nicolas Melin; Florian Nigsch; Virginie Petitjean; Frank Petersen; Ralph Riedl; Esther K. Schmitt; Frank Staedtler; Christian Studer; John A. Tallarico
Due to evolutionary conservation of biology, experimental knowledge captured from genetic studies in eukaryotic model organisms provides insight into human cellular pathways and ultimately physiology. Yeast chemogenomic profiling is a powerful approach for annotating cellular responses to small molecules. Using an optimized platform, we provide the relative sensitivities of the heterozygous and homozygous deletion collections for nearly 1800 biologically active compounds. The data quality enables unique insights into pathways that are sensitive and resistant to a given perturbation, as demonstrated with both known and novel compounds. We present examples of novel compounds that inhibit the therapeutically relevant fatty acid synthase and desaturase (Fas1p and Ole1p), and demonstrate how the individual profiles facilitate hypothesis-driven experiments to delineate compound mechanism of action. Importantly, the scale and diversity of tested compounds yields a dataset where the number of modulated pathways approaches saturation. This resource can be used to map novel biological connections, and also identify functions for unannotated genes. We validated hypotheses generated by global two-way hierarchical clustering of profiles for (i) novel compounds with a similar mechanism of action acting upon microtubules or vacuolar ATPases, and (ii) an un-annotated ORF, YIL060w, that plays a role in respiration in the mitochondria. Finally, we identify and characterize background mutations in the widely used yeast deletion collection which should improve the interpretation of past and future screens throughout the community. This comprehensive resource of cellular responses enables the expansion of our understanding of eukaryotic pathway biology.
Journal of Antimicrobial Chemotherapy | 2008
Mekonnen Kurabachew; Stephen H. J. Lu; Philipp Krastel; Esther K. Schmitt; Bangalore L. Suresh; Anne Goh; John E. Knox; Ngai Ling Ma; Jan Jiricek; David Beer; Michael H. Cynamon; Frank Petersen; Véronique Dartois; Thomas H. Keller; Thomas Dick; Vasan K. Sambandamurthy
OBJECTIVES The aim of this study was to determine the in vitro activity of lipiarmycin against drug-resistant strains of Mycobacterium tuberculosis (MTB) and to establish the resistance mechanism of MTB against lipiarmycin using genetic approaches. METHODS MIC values were measured against a panel of drug-resistant strains of MTB using the broth microdilution method. Spontaneous lipiarmycin-resistant mutants of MTB were tested for cross-resistance to standard anti-TB drugs, and their rpoB and rpoC genes were sequenced to identify mutations. RESULTS Lipiarmycin exhibited excellent inhibitory activity against multidrug-resistant strains of MTB with MIC values of <0.1 mg/L. Sequence analysis of the rpoB and rpoC genes from spontaneous lipiarmycin-resistant mutants of MTB revealed that missense mutations in these genes caused resistance to lipiarmycin. Although both lipiarmycin and rifampicin are known to inhibit the bacterial RNA polymerase, the sites of mutation in the rpoB gene were found to be different in MTB strains resistant to these inhibitors. Whereas all six rifampicin-resistant MTB strains tested had mutation in the 81 bp hotspot region of the rpoB gene spanning codons 507-533, 16 of 18 lipiarmycin-resistant strains exhibited mutation between codons 977 and 1150. The remaining two lipiarmycin-resistant strains had mutation in the rpoC gene. CONCLUSIONS Lipiarmycin has excellent bactericidal activity against MTB and lacks cross-resistance to standard anti-TB drugs. Furthermore, rifampicin-resistant strains remained fully susceptible to lipiarmycin, and none of the lipiarmycin-resistant MTB strains became resistant to rifampicin, highlighting the lack of cross-resistance.
Current Opinion in Chemical Biology | 2011
Esther K. Schmitt; Charles Moore; Philipp Krastel; Frank Petersen
Natural products are evolutionarily designed and chemically distinct from most synthetic library molecules. In addition to their role as drugs, they are successfully used as molecular probes to identify disease relevant targets. Novel natural products are still routinely discovered from traditional sources through cultivation of microorganisms. Complementary approaches based on genome sequence information and subsequent annotation of biosynthetic pathways are emerging technologies. However, to be of practical use for drug discovery, these concepts must be advanced beyond their current state.
Expert Opinion on Investigational Drugs | 2006
Jennifer A. Leeds; Esther K. Schmitt; Philipp Krastel
The pharmaceutical industry has historically relied on nature to provide compounds for antibacterial drug discovery. In recent years, several pharmaceutical companies have scaled back their efforts in natural product research. Nevertheless, the screening of natural products for antibacterial activity continues to provide excellent sources of biologically and chemically informative leads for new drugs. New technologies in high-throughput cultivation, genetic approaches to biodiversity and discovery of relatively untapped sources of natural products are expanding the ability to find novel, potent and highly selective antibacterial structures. Advances in purification, dereplication and structure elucidation, combined with the ability to chemically or biologically derivatise hits, aim to make the timeline for natural product-derived drug discovery similar or shorter than that expected for small synthetic molecules. This review addresses the strengths and shortcomings of technologies focused on microbe-derived natural products for antibacterial drug discovery and stresses the need for commitment to these approaches in order to achieve the goal of delivering safe, efficacious and high-quality medicines in the long run.
Angewandte Chemie | 2015
Philipp Krastel; Silvio Roggo; Markus Schirle; Nathan T. Ross; Francesca Perruccio; Peter Aspesi; Thomas Aust; Kathrin Buntin; David Estoppey; Brigitta Liechty; Felipa A. Mapa; Klaus Memmert; Howard R. Miller; Xuewen Pan; Ralph Riedl; Christian Thibaut; Jason R. Thomas; Trixie Wagner; Eric Weber; Xiaobing Xie; Esther K. Schmitt; Dominic Hoepfner
Cultivation of myxobacteria of the Nannocystis genus led to the isolation and structure elucidation of a class of novel cyclic lactone inhibitors of elongation factor 1. Whole genome sequence analysis and annotation enabled identification of the putative biosynthetic cluster and synthesis process. In biological assays the compounds displayed anti-fungal and cytotoxic activity. Combined genetic and proteomic approaches identified the eukaryotic translation elongation factor 1α (EF-1α) as the primary target for this compound class. Nannocystin A (1) displayed differential activity across various cancer cell lines and EEF1A1 expression levels appear to be the main differentiating factor. Biochemical and genetic evidence support an overlapping binding site of 1 with the anti-cancer compound didemnin B on EF-1α. This myxobacterial chemotype thus offers an interesting starting point for further investigations of the potential of therapeutics targeting elongation factor 1.
Angewandte Chemie | 2010
Ashutosh Kumar; Henrike Heise; Marcel J. J. Blommers; Philipp Krastel; Esther K. Schmitt; Frank Petersen; Siva Jeganathan; Eva-Maria Mandelkow; Teresa Carlomagno; Christian Griesinger; Marc Baldus
Solid evidence: Induction of the polymerization of β-tubulin dimers into microtubules by epothilones, such as patupilone, by an as yet unknown mechanism leads to the apoptosis of cancer cells. Solid-state NMR spectroscopy of patupilone bound to microtubules has now enabled the identification of atomic positions of the drug that undergo clear chemical-shift changes upon binding (see correlation spectra of free (black) and complexed patupilone (red)).