Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Esther Karunakaran is active.

Publication


Featured researches published by Esther Karunakaran.


Applied Microbiology and Biotechnology | 2011

Mechanisms of Bacillus cereus biofilm formation: an investigation of the physicochemical characteristics of cell surfaces and extracellular proteins

Esther Karunakaran; Catherine A. Biggs

Microbial biofilms contribute to biofouling in a wide range of processes from medical implants to processed food. The extracellular polymeric substances (EPS) are implicated in imparting biofilms with structural stability and resistance to cleaning products. Still, very little is known about the structural role of the EPS in Gram-positive systems. Here, we have compared the cell surface and EPS of surface-attached (biofilm) and free-floating (planktonic) cells of Bacillus cereus, an organism routinely isolated from within biofilms on different surfaces. Our results indicate that the surface properties of cells change during biofilm formation and that the EPS proteins function as non-specific adhesions during biofilm formation. The physicochemical traits of the cell surface and the EPS proteins give us an insight into the forces that drive biofilm formation and maintenance in B. cereus.


Journal of Proteome Research | 2011

Macromolecular fingerprinting of sulfolobus species in biofilm: a transcriptomic and proteomic approach combined with spectroscopic analysis.

Andrea Koerdt; Alvaro Orell; Trong Khoa Pham; Joy Mukherjee; Alexander Wlodkowski; Esther Karunakaran; Catherine A. Biggs; Phillip C. Wright; Sonja-Verena Albers

Microorganisms in nature often live in surface-associated sessile communities, encased in a self-produced matrix, referred to as biofilms. Biofilms have been well studied in bacteria but in a limited way for archaea. We have recently characterized biofilm formation in three closely related hyperthermophilic crenarchaeotes: Sulfolobus acidocaldarius, S. solfataricus, and S. tokodaii. These strains form different communities ranging from simple carpet structures in S. solfataricus to high density tower-like structures in S. acidocaldarius under static condition. Here, we combine spectroscopic, proteomic, and transcriptomic analyses to describe physiological and regulatory features associated with biofilms. Spectroscopic analysis reveals that in comparison to planktonic life-style, biofilm life-style has distinctive influence on the physiology of each Sulfolobus spp. Proteomic and transcriptomic data show that biofilm-forming life-style is strain specific (eg ca. 15% of the S. acidocaldarius genes were differently expressed, S. solfataricus and S. tokodaii had ∼3.4 and ∼1%, respectively). The -omic data showed that regulated ORFs were widely distributed in basic cellular functions, including surface modifications. Several regulated genes are common to biofilm-forming cells in all three species. One of the most striking common response genes include putative Lrs14-like transcriptional regulators, indicating their possible roles as a key regulatory factor in biofilm development.


Microbial Cell Factories | 2012

Influence of fermentation conditions on the surface properties and adhesion of Lactobacillus rhamnosus GG.

Gurjot Deepika; Esther Karunakaran; Claire R. Hurley; Catherine A. Biggs; Dimitris Charalampopoulos

BackgroundThe surface properties of probiotic bacteria influence to a large extent their interactions within the gut ecosystem. There is limited amount of information on the effect of the production process on the surface properties of probiotic lactobacilli in relation to the mechanisms of their adhesion to the gastrointestinal mucosa. The aim of this work was to investigate the effect of the fermentation pH and temperature on the surface properties and adhesion ability to Caco-2 cells of the probiotic strain Lactobacillus rhamnosus GG.ResultsThe cells were grown at pH 5, 5.5, 6 (temperature 37°C) and at pH 6.5 (temperature 25°C, 30°C and 37°C), and their surfaces analysed by X-ray photoelectron spectrometry (XPS), Fourier transform infrared spectroscopy (FT-IR) and gel-based proteomics. The results indicated that for all the fermentation conditions, with the exception of pH 5, a higher nitrogen to carbon ratio and a lower phosphate content was observed at the surface of the bacteria, which resulted in a lower surface hydrophobicity and reduced adhesion levels to Caco-2 cells as compared to the control fermentation (pH 6.5, 37°C). A number of adhesive proteins, which have been suggested in previous published works to take part in the adhesion of bacteria to the human gastrointestinal tract, were identified by proteomic analysis, with no significant differences between samples however.ConclusionsThe temperature and the pH of the fermentation influenced the surface composition, hydrophobicity and the levels of adhesion of L. rhamnosus GG to Caco-2 cells. It was deduced from the data that a protein rich surface reduced the adhesion ability of the cells.


Biofouling | 2012

Using a multi-faceted approach to determine the changes in bacterial cell surface properties influenced by a biofilm lifestyle

Joy Mukherjee; Esther Karunakaran; Catherine A. Biggs

Biofilm formation is a developmental process in which initial reversible adhesion is governed by physico-chemical forces, whilst irreversible adhesion is mediated by biological changes within a cell, such as the production of extracellular polymeric substances. Using two bacteria, E. coli MG1655 and B. cereus ATCC 10987, this study establishes that the surface of the bacterial cell also undergoes specific modifications, which result in biofilm formation and maintenance. Using various surface characterisation techniques and proteomics, an increase in the surface exposed proteins on E. coli cells during biofilm formation was demonstrated, along with an increase in hydrophobicity and a decrease in surface charge. For B. cereus, an increase in the surface polysaccharides during biofilm formation was found as well as a decrease in hydrophobicity and surface charge. This work therefore shows that surface modifications during biofilm formation occur and understanding these specific changes may lead to the formulation of effective biofilm control strategies in the future.


Plant Physiology | 2014

Biodesalination: A Case Study for Applications of Photosynthetic Bacteria in Water Treatment

Jaime M. Amezaga; Anna Amtmann; Catherine A. Biggs; Tom Bond; Catherine J. Gandy; Annegret Honsbein; Esther Karunakaran; Linda A. Lawton; Mary Ann Madsen; Konstantinos Minas; Michael R. Templeton

Current knowledge, methodologies, and public acceptance issues present challenges and opportunities for the use of cyanobacteria in water treatment. Shortage of freshwater is a serious problem in many regions worldwide, and is expected to become even more urgent over the next decades as a result of increased demand for food production and adverse effects of climate change. Vast water resources in the oceans can only be tapped into if sustainable, energy-efficient technologies for desalination are developed. Energization of desalination by sunlight through photosynthetic organisms offers a potential opportunity to exploit biological processes for this purpose. Cyanobacterial cultures in particular can generate a large biomass in brackish and seawater, thereby forming a low-salt reservoir within the saline water. The latter could be used as an ion exchanger through manipulation of transport proteins in the cell membrane. In this article, we use the example of biodesalination as a vehicle to review the availability of tools and methods for the exploitation of cyanobacteria in water biotechnology. Issues discussed relate to strain selection, environmental factors, genetic manipulation, ion transport, cell-water separation, process design, safety, and public acceptance.


PLOS ONE | 2015

Influence of Substrates on the Surface Characteristics and Membrane Proteome of Fibrobacter succinogenes S85

Mahendra P. Raut; Esther Karunakaran; Joy Mukherjee; Catherine A. Biggs; Phillip C. Wright

Although Fibrobacter succinogenes S85 is one of the most proficient cellulose degrading bacteria among all mesophilic organisms in the rumen of herbivores, the molecular mechanism behind cellulose degradation by this bacterium is not fully elucidated. Previous studies have indicated that cell surface proteins might play a role in adhesion to and subsequent degradation of cellulose in this bacterium. It has also been suggested that cellulose degradation machinery on the surface may be selectively expressed in response to the presence of cellulose. Based on the genome sequence, several models of cellulose degradation have been suggested. The aim of this study is to evaluate the role of the cell envelope proteins in adhesion to cellulose and to gain a better understanding of the subsequent cellulose degradation mechanism in this bacterium. Comparative analysis of the surface (exposed outer membrane) chemistry of the cells grown in glucose, acid-swollen cellulose and microcrystalline cellulose using physico-chemical characterisation techniques such as electrophoretic mobility analysis, microbial adhesion to hydrocarbons assay and Fourier transform infra-red spectroscopy, suggest that adhesion to cellulose is a consequence of an increase in protein display and a concomitant reduction in the cell surface polysaccharides in the presence of cellulose. In order to gain further understanding of the molecular mechanism of cellulose degradation in this bacterium, the cell envelope-associated proteins were enriched using affinity purification and identified by tandem mass spectrometry. In total, 185 cell envelope-associated proteins were confidently identified. Of these, 25 proteins are predicted to be involved in cellulose adhesion and degradation, and 43 proteins are involved in solute transport and energy generation. Our results supports the model that cellulose degradation in F. succinogenes occurs at the outer membrane with active transport of cellodextrins across for further metabolism of cellodextrins to glucose in the periplasmic space and inner cytoplasmic membrane.


Colloids and Surfaces B: Biointerfaces | 2016

Physicochemical analysis of initial adhesion and biofilm formation of Methanosarcina barkeri on polymer support material.

Esther Karunakaran; Gavin Collins; Catherine A. Biggs

The retention of selective biofilms of Methanosarcina species within anaerobic digesters could reduce start-up times and enhance the efficiency of the process in treating high-strength domestic sewage. The objective of the study was to examine the effect of the surface characteristics of six common polymer support materials on the initial adhesion of the model methanogen, Methanosarcina barkeri, and to assess the potential of these support materials as selective biofilm carriers. Results from both the initial adhesion tests and extended DLVO (xDLVO) model correlated with each other, with PVC (12% surface coverage/mm(2)), PTFE (6% surface coverage/mm(2)), and PP (6% surface coverage/mm(2)), shown to be the better performing support materials for initial adhesion, as well as subsequent biofilm formation by M. barkeri after 72h. Experimental results of these three support materials showed that the type of material strongly influenced the extent of adhesion from M. barkeri (p<0.0001), and the xDLVO model was able to explain the results in these environmental conditions. Therefore, DLVO physicochemical forces were found to be influential on the initial adhesion of M. barkeri. Scanning electron microscopy suggested that production of extracellular polymeric substances (EPS) from M. barkeri could facilitate further biofilm development. This study highlights the potential of using the xDLVO model to rapidly identify suitable materials for the selective adhesion of M. barkeri, which could be beneficial in both the start-up and long-term phases of anaerobic digestion.


Desalination and Water Treatment | 2015

Biodesalination: an emerging technology for targeted removal of Na+ and Cl- from seawater by cyanobacteria

Konstantinos Minas; Esther Karunakaran; Tom Bond; Catherine J. Gandy; Annegret Honsbein; Mary Ann Madsen; Jaime M. Amezaga; Anna Amtmann; Michael R. Templeton; Catherine A. Biggs; Linda A. Lawton

Although desalination by membrane processes is a possible solution to the problem of freshwater supply, related cost and energy demands prohibit its use on a global scale. Hence, there is an emerging necessity for alternative, energy and cost-efficient methods for water desalination. Cyanobacteria are oxygen-producing, photosynthetic bacteria that actively grow in vast blooms both in fresh and seawater bodies. Moreover, cyanobacteria can grow with minimal nutrient requirements and under natural sunlight. Taking these observations together, a consortium of five British Universities was formed to test the principle of using cyanobacteria as ion exchangers, for the specific removal of Na+ and Cl− from seawater. This project consisted of the isolation and characterisation of candidate strains, with central focus on their potential to be osmotically and ionically adaptable. The selection panel resulted in the identification of two Euryhaline strains, one of freshwater (Synechocystis sp. Strain PCC 6803) and one of marine origin (Synechococcus sp. Strain PCC 7002) (Robert Gordon University, Aberdeen). Other work packages were as follows. Genetic manipulations potentially allowed for the expression of a light-driven, Cl−-selective pump in both strains, therefore, enhancing the bioaccumulation of specific ions within the cell (University of Glasgow). Characterisation of surface properties under different salinities (University of Sheffield), ensured that cell–liquid separation efficiency would be maximised post-treatment, as well as monitoring the secretion of mucopolysaccharides in the medium during cell growth. Work at Newcastle University is focused on the social acceptance of this scenario, together with an assessment of the potential risks through the generation and application of a Hazard Analysis and Critical Control Points plan. Finally, researchers in Imperial College (London) designed the process, from biomass production to water treatment and generation of a model photobioreactor. This multimodal approach has produced promising first results, and further optimisation is expected to result in mass scaling of this process.


Water Science and Technology | 2016

Enumeration of sulphate-reducing bacteria for assessing potential for hydrogen sulphide production in urban drainage systems

Esther Karunakaran; Dejan Vernon; Catherine A. Biggs; Adrian J. Saul; David Crawford; Henriette Stokbro Jensen

Urban drainage structures have increasing demands which can lead to increasing hydrogen sulphide related problems forming in places where they have not previously been prevalent. This puts pressure on the methods currently used to monitor and diagnose these problems and more sophisticated methods may be needed for identifying the origin of the problems. Molecular microbiological techniques, such as quantitative polymerase chain reaction, offer a potential alternative for identifying and quantifying bacteria likely to be causing the production of hydrogen sulphide, information that, when combined with an appropriate sampling programme, can then be used to identify the potentially most effective remediation technique. The application of these methods in urban drainage systems is, however, not always simple, but good results can be achieved. In this study bacteria producing hydrogen sulphide were quantified in three small combined sewer overflow storage tanks. Bacterial counts were compared between wastewater, biofilms and sediments. Similar numbers were found in the wastewater and biofilms, with the numbers in the sediments being lower. If remediation methods for hydrogen sulphide are deemed necessary in the tanks, methods that target both the wastewater and the biofilms should therefore be considered.


Journal of Environmental Science and Health Part A-toxic\/hazardous Substances & Environmental Engineering | 2015

Development of wastewater treatment system based on cascade dielectric barrier discharge plasma atomizers.

Wameath S. Abdul-Majeed; Esther Karunakaran; Catherine A. Biggs; William B. Zimmerman

A novel design for a cascade dielectric barrier discharge (DBD) atomizer was applied for treating samples of water containing biological and organic contaminants. Several experimental investigations were conducted on artificial samples and real sample (digested sludge collected from a wastewater treatment plant, WWTP). The artificial water samples were prepared by using different concentrations of E. coli for biological samples, whereas acetic acid was used to prepare the organic samples. The biological samples were subjected to the plasma effect for different treatment periods, and the growth curves of E. coli were generated for 24 h after treatment. Moreover, the viable cells were counted after each treatment period and the change in E. coli morphology was monitored. The results showed that a significant reduction in the viable cell number, by 3 orders of magnitude, occurred for an artificial biological sample after only 5-min treatment. The treatment of organic samples for 10 min showed a significant reduction in the concentration of acetic acid by 50%. In consequence, treatment of real wastewater sample for 10 min resulted in more than 70% reduction in BOD5 and 30% reduction in COD.

Collaboration


Dive into the Esther Karunakaran's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tom Bond

Imperial College London

View shared research outputs
Researchain Logo
Decentralizing Knowledge