Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Esther Kellenberger is active.

Publication


Featured researches published by Esther Kellenberger.


Journal of Chemical Information and Modeling | 2006

sc-PDB : an annotated database of druggable binding sites from the protein data bank

Esther Kellenberger; Pascal Muller; Claire Schalon; Guillaume Bret; Nicolas Foata; Didier Rognan

The sc-PDB is a collection of 6 415 three-dimensional structures of binding sites found in the Protein Data Bank (PDB). Binding sites were extracted from all high-resolution crystal structures in which a complex between a protein cavity and a small-molecular-weight ligand could be identified. Importantly, ligands are considered from a pharmacological and not a structural point of view. Therefore, solvents, detergents, and most metal ions are not stored in the sc-PDB. Ligands are classified into four main categories: nucleotides (< 4-mer), peptides (< 9-mer), cofactors, and organic compounds. The corresponding binding site is formed by all protein residues (including amino acids, cofactors, and important metal ions) with at least one atom within 6.5 angstroms of any ligand atom. The database was carefully annotated by browsing several protein databases (PDB, UniProt, and GO) and storing, for every sc-PDB entry, the following features: protein name, function, source, domain and mutations, ligand name, and structure. The repository of ligands has also been archived by diversity analysis of molecular scaffolds, and several chemoinformatics descriptors were computed to better understand the chemical space covered by stored ligands. The sc-PDB may be used for several purposes: (i) screening a collection of binding sites for predicting the most likely target(s) of any ligand, (ii) analyzing the molecular similarity between different cavities, and (iii) deriving rules that describe the relationship between ligand pharmacophoric points and active-site properties. The database is periodically updated and accessible on the web at http://bioinfo-pharma.u-strasbg.fr/scPDB/.


Journal of Biological Chemistry | 2008

Small Neutralizing Molecules to Inhibit Actions of the Chemokine CXCL12

Muriel Hachet-Haas; Karl Balabanian; François Rohmer; Françoise Pons; Christel Anne Franchet; Sandra Lecat; Ken Y. C. Chow; Rania Dagher; Patrick Gizzi; Bruno Didier; Bernard Lagane; Esther Kellenberger; Dominique Bonnet; Françoise Baleux; Jacques Haiech; Marc Parmentier; Nelly Frossard; Fernando Arenzana-Seisdedos; Marcel Hibert; Jean-Luc Galzi

The chemokine CXCL12 and the receptor CXCR4 play pivotal roles in normal vascular and neuronal development, in inflammatory responses, and in infectious diseases and cancer. For instance, CXCL12 has been shown to mediate human immunodeficiency virus-induced neurotoxicity, proliferative retinopathy and chronic inflammation, whereas its receptor CXCR4 is involved in human immunodeficiency virus infection, cancer metastasis and in the rare disease known as the warts, hypogammaglobulinemia, immunodeficiency, and myelokathexis (WHIM) syndrome. As we screened chemical libraries to find inhibitors of the interaction between CXCL12 and the receptor CXCR4, we identified synthetic compounds from the family of chalcones that reduce binding of CXCL12 to CXCR4, inhibit calcium responses mediated by the receptor, and prevent CXCR4 internalization in response to CXCL12. We found that the chemical compounds display an original mechanism of action as they bind to the chemokine but not to CXCR4. The highest affinity molecule blocked chemotaxis of human peripheral blood lymphocytes ex vivo. It was also active in vivo in a mouse model of allergic eosinophilic airway inflammation in which we detected inhibition of the inflammatory infiltrate. The compound showed selectivity for CXCL12 and not for CCL5 and CXCL8 chemokines and blocked CXCL12 binding to its second receptor, CXCR7. By analogy to the effect of neutralizing antibodies, this molecule behaves as a small organic neutralizing compound that may prove to have valuable pharmacological and therapeutic potential.


Journal of Biological Chemistry | 2011

Allosteric Model of Maraviroc Binding to CC Chemokine Receptor 5 (CCR5)

Javier García-Pérez; Patricia Rueda; José Alcamí; Didier Rognan; Fernando Arenzana-Seisdedos; Bernard Lagane; Esther Kellenberger

Maraviroc is a nonpeptidic small molecule human immunodeficiency virus type 1 (HIV-1) entry inhibitor that has just entered the therapeutic arsenal for the treatment of patients. We recently demonstrated that maraviroc binding to the HIV-1 coreceptor, CC chemokine receptor 5 (CCR5), prevents it from binding the chemokine CCL3 and the viral envelope glycoprotein gp120 by an allosteric mechanism. However, incomplete knowledge of ligand-binding sites and the lack of CCR5 crystal structures have hampered an in-depth molecular understanding of how the inhibitor works. Here, we addressed these issues by combining site-directed mutagenesis (SDM) with homology modeling and docking. Six crystal structures of G-protein-coupled receptors were compared for their suitability for CCR5 modeling. All CCR5 models had equally good geometry, but that built from the recently reported dimeric structure of the other HIV-1 coreceptor CXCR4 bound to the peptide CVX15 (Protein Data Bank code 3OE0) best agreed with the SDM data and discriminated CCR5 from non-CCR5 binders in a virtual screening approach. SDM and automated docking predicted that maraviroc inserts deeply in CCR5 transmembrane cavity where it can occupy three different binding sites, whereas CCL3 and gp120 lie on distinct yet overlapped regions of the CCR5 extracellular loop 2. Data suggesting that the transmembrane cavity remains accessible for maraviroc in CCL3-bound and gp120-bound CCR5 help explain our previous observation that the inhibitor enhances dissociation of preformed ligand-CCR5 complexes. Finally, we identified residues in the predicted CCR5 dimer interface that are mandatory for gp120 binding, suggesting that receptor dimerization might represent a target for new CCR5 entry inhibitors.


Bioinformatics | 2011

sc-PDB

Jamel Meslamani; Didier Rognan; Esther Kellenberger

BACKGROUND The sc-PDB database is an annotated archive of druggable binding sites extracted from the Protein Data Bank. It contains all-atoms coordinates for 8166 protein-ligand complexes, chosen for their geometrical and physico-chemical properties. The sc-PDB provides a functional annotation for proteins, a chemical description for ligands and the detailed intermolecular interactions for complexes. The sc-PDB now includes a hierarchical classification of all the binding sites within a functional class. METHOD The sc-PDB entries were first clustered according to the protein name indifferent of the species. For each cluster, we identified dissimilar sites (e.g. catalytic and allosteric sites of an enzyme). SCOPE AND APPLICATIONS: The classification of sc-PDB targets by binding site diversity was intended to facilitate chemogenomics approaches to drug design. In ligand-based approaches, it avoids comparing ligands that do not share the same binding site. In structure-based approaches, it permits to quantitatively evaluate the diversity of the binding site definition (variations in size, sequence and/or structure). AVAILABILITY The sc-PDB database is freely available at: http://bioinfo-pharma.u-strasbg.fr/scPDB.


Journal of Chemical Information and Modeling | 2012

Comparison and Druggability Prediction of Protein–Ligand Binding Sites from Pharmacophore-Annotated Cavity Shapes

Jérémy Desaphy; Karima Azdimousa; Esther Kellenberger; Didier Rognan

Estimating the pairwise similarity of protein-ligand binding sites is a fast and efficient way of predicting cross-reactivity and putative side effects of drug candidates. Among the many tools available, three-dimensional (3D) alignment-dependent methods are usually slow and based on simplified representations of binding site atoms or surfaces. On the other hand, fast and efficient alignment-free methods have recently been described but suffer from a lack of interpretability. We herewith present a novel binding site description (VolSite), coupled to an alignment and comparison tool (Shaper) combining the speed of alignment-free methods with the interpretability of alignment-dependent approaches. It is based on the comparison of negative images of binding cavities encoding both shape and pharmacophoric properties at regularly spaced grid points. Shaper approximates the resulting molecular shape with a smooth Gaussian function and aligns protein binding sites by optimizing their volume overlap. Volsite and Shaper were successfully applied to compare protein-ligand binding sites and to predict their structural druggability.


Current Computer - Aided Drug Design | 2008

How to Measure the Similarity Between Protein Ligand-Binding Sites?

Esther Kellenberger; Claire Schalon; Didier Rognan

Quantification of local similarity between protein 3D structures is a promising tool in computer-aided drug design and prediction of biological function. Over the last ten years, several computational methods were proposed, mostly based on geometrical comparisons. This review summarizes the recent literature and gives an overview of available programs. A particular interest is given to the underlying methodologies. Our analysis points out strengths and weaknesses of the various approaches. If all described methods work relatively well when two binding sites obviously resemble each other, scoring potential solutions remains a difficult issue, especially if the similarity is low. The other challenging question is the protein flexibility, which is indeed difficult to evaluate from a static representation. Last, most of recently developed techniques are fast and can be applied to large amounts of data. Examples were carefully chosen to illustrate the wide applicability domain of the most popular methods: detection of common structural motifs, identification of secondary targets for a drug-like compound, comparison of binding sites across a functional family, comparison of homology models, database screening.


Journal of Biological Chemistry | 2011

New Insights into the Mechanisms whereby Low Molecular Weight CCR5 Ligands Inhibit HIV-1 Infection *□

Javier Garcia-Perez; Patricia Rueda; Isabelle Staropoli; Esther Kellenberger; José Alcamí; Fernando Arenzana-Seisdedos; Bernard Lagane

CC chemokine receptor 5 (CCR5) is a G-protein-coupled receptor for the chemokines CCL3, -4, and -5 and a coreceptor for entry of R5-tropic strains of human immunodeficiency virus type 1 (HIV-1) into CD4+ T-cells. We investigated the mechanisms whereby nonpeptidic, low molecular weight CCR5 ligands block HIV-1 entry and infection. Displacement binding assays and dissociation kinetics demonstrated that two of these molecules, i.e. TAK779 and maraviroc (MVC), inhibit CCL3 and the HIV-1 envelope glycoprotein gp120 binding to CCR5 by a noncompetitive and allosteric mechanism, supporting the view that they bind to regions of CCR5 distinct from the gp120- and CCL3-binding sites. We observed that TAK779 and MVC are full and weak inverse agonists for CCR5, respectively, indicating that they stabilize distinct CCR5 conformations with impaired abilities to activate G-proteins. Dissociation of [125I]CCL3 from CCR5 was accelerated by TAK779, to a lesser extent by MVC, and by GTP analogs, suggesting that inverse agonism contributes to allosteric inhibition of the chemokine binding to CCR5. TAK779 and MVC also promote dissociation of [35S]gp120 from CCR5 with an efficiency that correlates with their ability to act as inverse agonists. Displacement experiments revealed that affinities of MVC and TAK779 for the [35S]gp120-binding receptors are in the same range (IC50 ∼6.4 versus 22 nm), although we found that MVC is 100-fold more potent than TAK779 for inhibiting HIV infection. This suggests that allosteric CCR5 inhibitors not only act by blocking gp120 binding but also alter distinct steps of CCR5 usage in the course of HIV infection.


Bioorganic & Medicinal Chemistry Letters | 2011

Flavonoids as inhibitors of human CD38.

Esther Kellenberger; Isabelle Kuhn; Francis Schuber; Hélène Muller-Steffner

CD38 is a multifunctional enzyme which is ubiquitously distributed in mammalian tissues. It is involved in the conversion of NAD(P)(+) into cyclic ADP-ribose, NAADP(+) and ADP-ribose and the role of these metabolites in multiple Ca(2+) signaling pathways makes CD38 a novel potential pharmacological target. The dire paucity of CD38 inhibitors, however, renders the search for new molecular tools highly desirable. We report that human CD38 is inhibited at low micromolar concentrations by flavonoids such as luteolinidin, kuromanin and luteolin (IC(50) <10 μM). Docking studies provide some clues on the mode of interaction of these molecules with the active site of CD38.


Nucleic Acids Research | 2015

sc-PDB: a 3D-database of ligandable binding sites—10 years on

Jérémy Desaphy; Guillaume Bret; Didier Rognan; Esther Kellenberger

The sc-PDB database (available at http://bioinfo-pharma.u-strasbg.fr/scPDB/) is a comprehensive and up-to-date selection of ligandable binding sites of the Protein Data Bank. Sites are defined from complexes between a protein and a pharmacological ligand. The database provides the all-atom description of the protein, its ligand, their binding site and their binding mode. Currently, the sc-PDB archive registers 9283 binding sites from 3678 unique proteins and 5608 unique ligands. The sc-PDB database was publicly launched in 2004 with the aim of providing structure files suitable for computational approaches to drug design, such as docking. During the last 10 years we have improved and standardized the processes for (i) identifying binding sites, (ii) correcting structures, (iii) annotating protein function and ligand properties and (iv) characterizing their binding mode. This paper presents the latest enhancements in the database, specifically pertaining to the representation of molecular interaction and to the similarity between ligand/protein binding patterns. The new website puts emphasis in pictorial analysis of data.


Journal of Biological Chemistry | 2000

Structural Characterization of the Cysteine-rich Domain of TFIIH p44 Subunit

Sébastien Fribourg; Esther Kellenberger; Hélène Rogniaux; Arnaud Poterszman; Alain Van Dorsselaer; Jean-Claude Thierry; Jean-Marc Egly; Dino Moras; Bruno Kieffer

In an effort to understand the structure function relationship of TFIIH, a transcription/repair factor, we focused our attention on the p44 subunit, which plays a central role in both mechanisms. The amino-terminal portion of p44 has been shown to be involved in the regulation of the XPD helicase activity; here we show that its carboxyl-terminal domain is essential for TFIIH transcription activity and that it binds three zinc atoms through two independent modules. The first contains a C4 zinc finger motif, whereas the second is characterized by a CX 2CX 2–4FCADCD motif, corresponding to interleaved zinc binding sites. The solution structure of this second module reveals an unexpected homology with the regulatory domain of protein kinase C and provides a framework to study its role at the molecular level.

Collaboration


Dive into the Esther Kellenberger's collaboration.

Top Co-Authors

Avatar

Didier Rognan

University of Strasbourg

View shared research outputs
Top Co-Authors

Avatar

Hélène Muller-Steffner

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Isabelle Kuhn

University of Strasbourg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bruno Kieffer

University of Strasbourg

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge