Esther Lechner
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Esther Lechner.
Cell | 2003
Thomas Potuschak; Esther Lechner; Yves Parmentier; Shuichi Yanagisawa; Sandrine Grava; Csaba Koncz; Pascal Genschik
The plant hormone ethylene regulates a wide range of developmental processes and the response of plants to stress and pathogens. Genetic studies in Arabidopsis led to a partial elucidation of the mechanisms of ethylene action. Ethylene signal transduction initiates with ethylene binding at a family of ethylene receptors and terminates in a transcription cascade involving the EIN3/EIL and ERF families of plant-specific transcription factors. Here, we identify two Arabidopsis F box proteins called EBF1 and EBF2 that interact physically with EIN3/EIL transcription factors. EBF1 overexpression results in plants insensitive to ethylene. In contrast, plants carrying the ebf1 and ebf2 mutations display a constitutive ethylene response and accumulate the EIN3 protein in the absence of the hormone. Our work places EBF1 and EBF2 within the genetic framework of the ethylene-response pathway and supports a model in which ethylene action depends on EIN3 protein stabilization.
The Plant Cell | 2002
Linghui Xu; Fuquan Liu; Esther Lechner; Pascal Genschik; William L. Crosby; Hong Ma; Wen Peng; Dafang Huang; Daoxin Xie
Xie and colleagues previously isolated the Arabidopsis COI1 gene that is required for response to jasmonates (JAs), which regulate root growth, pollen fertility, wound healing, and defense against insects and pathogens. In this study, we demonstrate that COI1 associates physically with AtCUL1, AtRbx1, and either of the Arabidopsis Skp1-like proteins ASK1 or ASK2 to assemble ubiquitin-ligase complexes, which we have designated SCFCOI1. COI1E22A, a single amino acid substitution in the F-box motif of COI1, abolishes the formation of the SCFCOI1 complexes and results in loss of the JA response. AtRbx1 double-stranded RNA-mediated genetic interference reduces AtRbx1 expression and affects JA-inducible gene expression. Furthermore, we show that the AtCUL1 component of SCFCOI1 complexes is modified in planta, where mutations in AXR1 decrease the abundance of the modified AtCUL1 of SCFCOI1 and lead to a reduction in JA response. Finally, we demonstrate that the axr1 and coi1 mutations display a synergistic genetic interaction in the double mutant. These results suggest that the COI1-mediated JA response is dependent on the SCFCOI1 complexes in Arabidopsis and that the AXR1-dependent modification of the AtCUL1 subunit of SCFCOI1 complexes is important for JA signaling.
Proceedings of the National Academy of Sciences of the United States of America | 2006
Aurélie Angot; Nemo Peeters; Esther Lechner; Fabienne Vailleau; Catherine Baud; Laurent Gentzbittel; Elodie Sartorel; Pascal Genschik; Christian Boucher; Stéphane Genin
The phytopathogenic bacterium Ralstonia solanacearum encodes a family of seven type III secretion system (T3SS) effectors that contain both a leucine-rich repeat and an F-box domain. This structure is reminiscent of a class of typical eukaryotic proteins called F-box proteins. The latter, together with Skp1 and Cullin1 subunits, constitute the SCF-type E3 ubiquitin ligase complex and control specific protein ubiquitinylation. In the eukaryotic cell, depending on the nature of the polyubiquitin chain, the ubiquitin-tagged proteins either see their properties modified or are doomed for degradation by the 26S proteasome. This pathway is essential to many developmental processes in plants, ranging from hormone signaling and flower development to stress responses. Here, we show that these previously undescribed T3SS effectors are putative bacterial F-box proteins capable of interacting with a subset of the 19 different Arabidopsis Skp1-like proteins like bona fide Arabidopsis F-box proteins. A R. solanacearum strain in which all of the seven GALA effector genes have been deleted or mutated was no longer pathogenic on Arabidopsis and less virulent on tomato. Furthermore, we found that GALA7 is a host-specificity factor, required for disease on Medicago truncatula plants. Our results indicate that the GALA T3SS effectors are essential to R. solanacearum to control disease. Because the F-box domain is essential to the virulence function of GALA7, we hypothesize that these effectors act by hijacking their host SCF-type E3 ubiquitin ligases to interfere with their host ubiquitin/proteasome pathway to promote disease.
The EMBO Journal | 2013
Pascal Genschik; Izabela Sumara; Esther Lechner
Protein ubiquitylation is a post‐translational modification that controls all aspects of eukaryotic cell functionality, and its defective regulation is manifested in various human diseases. The ubiquitylation process requires a set of enzymes, of which the ubiquitin ligases (E3s) are the substrate recognition components. Modular CULLIN‐RING ubiquitin ligases (CRLs) are the most prevalent class of E3s, comprising hundreds of distinct CRL complexes with the potential to recruit as many and even more protein substrates. Best understood at both structural and functional levels are CRL1 or SCF (SKP1/CUL1/F‐box protein) complexes, representing the founding member of this class of multimeric E3s. Another CRL subfamily, called CRL3, is composed of the molecular scaffold CULLIN3 and the RING protein RBX1, in combination with one of numerous BTB domain proteins acting as substrate adaptors. Recent work has firmly established CRL3s as major regulators of different cellular and developmental processes as well as stress responses in both metazoans and higher plants. In humans, functional alterations of CRL3s have been associated with various pathologies, including metabolic disorders, muscle, and nerve degeneration, as well as cancer. In this review, we summarize recent discoveries on the function of CRL3s in both metazoans and plants, and discuss their mode of regulation and specificities.
The Plant Cell | 2011
Diana Roberts; Ullas V. Pedmale; Johanna Morrow; Shrikesh Sachdev; Esther Lechner; Xiaobo Tang; Ning Zheng; Mark Hannink; Pascal Genschik; Emmanuel Liscum
This work demonstrates that the NPH3 protein of Arabidopsis represents a core component of a CULLIN3-based E3 ubiquitin ligase that targets the phototropin1 (phot1) photoreceptor for blue light–stimulated mono/multi- and polyubiquitination. In addition, it was shown that phot1 ubiquitination by this E3 complex is necessary for normal phototropic responsiveness. Plant phototropism is an adaptive response to changes in light direction, quantity, and quality that results in optimization of photosynthetic light harvesting, as well as water and nutrient acquisition. Though several components of the phototropic signal response pathway have been identified in recent years, including the blue light (BL) receptors phototropin1 (phot1) and phot2, much remains unknown. Here, we show that the phot1-interacting protein NONPHOTOTROPIC HYPOCOTYL3 (NPH3) functions as a substrate adapter in a CULLIN3-based E3 ubiquitin ligase, CRL3NPH3. Under low-intensity BL, CRL3NPH3 mediates the mono/multiubiquitination of phot1, likely marking it for clathrin-dependent internalization from the plasma membrane. In high-intensity BL, phot1 is both mono/multi- and polyubiquitinated by CRL3NPH3, with the latter event targeting phot1 for 26S proteasome-mediated degradation. Polyubiquitination and subsequent degradation of phot1 under high-intensity BL likely represent means of receptor desensitization, while mono/multiubiquitination-stimulated internalization of phot1 may be coupled to BL-induced relocalization of hormone (auxin) transporters.
PLOS Genetics | 2009
Alexis Thomann; Esther Lechner; Maureen Hansen; Eva Dumbliauskas; Yves Parmentier; Joseph J. Kieber; Ben Scheres; Pascal Genschik
CULLIN3 (CUL3) together with BTB-domain proteins form a class of Cullin-RING ubiquitin ligases (called CRL3s) that control the rapid and selective degradation of important regulatory proteins in all eukaryotes. Here, we report that in the model plant Arabidopsis thaliana, CUL3 regulates plant growth and development, not only during embryogenesis but also at post-embryonic stages. First, we show that CUL3 modulates the emission of ethylene, a gaseous plant hormone that is an important growth regulator. A CUL3 hypomorphic mutant accumulates ACS5, the rate-limiting enzyme in ethylene biosynthesis and as a consequence exhibits a constitutive ethylene response. Second, we provide evidence that CUL3 regulates primary root growth by a novel ethylene-dependant pathway. In particular, we show that CUL3 knockdown inhibits primary root growth by reducing root meristem size and cell number. This phenotype is suppressed by ethylene-insensitive or resistant mutations. Finally, we identify a function of CUL3 in distal root patterning, by a mechanism that is independent of ethylene. Thus, our work highlights that CUL3 is essential for the normal division and organisation of the root stem cell niche and columella root cap cells.
PLOS Genetics | 2008
Jean Molinier; Esther Lechner; Eva Dumbliauskas; Pascal Genschik
Plants use the energy in sunlight for photosynthesis, but as a consequence are exposed to the toxic effect of UV radiation especially on DNA. The UV-induced lesions on DNA affect both transcription and replication and can also have mutagenic consequences. Here we investigated the regulation and the function of the recently described CUL4-DDB1-DDB2 E3 ligase in the maintenance of genome integrity upon UV-stress using the model plant Arabidopsis. Physiological, biochemical, and genetic evidences indicate that this protein complex is involved in global genome repair (GGR) of UV-induced DNA lesions. Moreover, we provide evidences for crosstalks between GGR, the plant-specific photo reactivation pathway and the RAD1-RAD10 endonucleases upon UV exposure. Finally, we report that DDB2 degradation upon UV stress depends not only on CUL4, but also on the checkpoint protein kinase Ataxia telangiectasia and Rad3-related (ATR). Interestingly, we found that DDB1A shuttles from the cytoplasm to the nucleus in an ATR-dependent manner, highlighting an upstream level of control and a novel mechanism of regulation of this E3 ligase.
Nature Communications | 2013
Alexandre Tromas; Sébastien Paque; Vérène Stierlé; Anne-Laure Quettier; Philippe Muller; Esther Lechner; Pascal Genschik; Catherine Perrot-Rechenmann
Auxin is a major plant hormone that controls most aspects of plant growth and development. Auxin is perceived by two distinct classes of receptors: transport inhibitor response 1 (TIR1, or auxin-related F-box (AFB)) and auxin/indole-3-acetic acid (AUX/IAA) coreceptors, that control transcriptional responses to auxin, and the auxin-binding protein 1 (ABP1), that controls a wide variety of growth and developmental processes. To date, the mode of action of ABP1 is still poorly understood and its functional interaction with TIR1/AFB-AUX/IAA coreceptors remains elusive. Here we combine genetic and biochemical approaches to gain insight into the integration of these two pathways. We find that ABP1 is genetically upstream of TIR1/AFBs; ABP1 knockdown leads to an enhanced degradation of AUX/IAA repressors, independently of its effects on endocytosis, through the SCF(TIR1/AFB) E3 ubiquitin ligase pathway. Combining positive and negative regulation of SCF ubiquitin-dependent pathways might be a common mechanism conferring tight control of hormone-mediated responses.
Journal of Biological Chemistry | 2009
Johannes Stuttmann; Esther Lechner; Raphaël Guerois; Jane E. Parker; Laurent Nussaume; Pascal Genschik; Laurent D. Noël
Ubiquitination and proteasome-mediated degradation of proteins are crucial for eukaryotic physiology and development. The largest class of E3 ubiquitin ligases is made up of the cullin-RING ligases (CRLs), which themselves are positively regulated through conjugation of the ubiquitin-like peptide RUB/NEDD8 to cullins. RUB modification is antagonized by the COP9 signalosome (CSN), an evolutionarily conserved eight-subunit complex that is essential in most eukaryotes and cleaves RUB from cullins. The CSN behaves genetically as an activator of CRLs, although it abolishes CRL activity in vitro. This apparent paradox was recently reconciled in different organisms, as the CSN was shown to prevent autocatalytic degradation of several CRL substrate adaptors. We tested for such a mechanism in the model plant Arabidopsis by measuring the impact of a newly identified viable csn2 mutant on the activity and stability of SCFTIR1, a receptor to the phytohormone auxin and probably the best characterized plant CRL. Our analysis reveals that not only the F-box protein TIR1 but also relevant cullins are destabilized in csn2 and other Arabidopsis csn mutants. These results provide an explanation for the auxin resistance of csn mutants. We further observed in vivo a post-translational modification of TIR1 dependent on the proteasome inhibitor MG-132 and provide evidence for proteasome-mediated degradation of TIR1, CUL1, and ASK1 (Arabidopsis SKP1 homolog). These results are consistent with CSN-dependent protection of Arabidopsis CRLs from autocatalytic degradation, as observed in other eukaryotes, and provide evidence for antagonist roles of the CSN and 26S proteasome in modulating accumulation of the plant CRL SCFTIR1.
The EMBO Journal | 2011
Eva Dumbliauskas; Esther Lechner; Miłosława Jaciubek; Alexandre Berr; Maghsoud Pazhouhandeh; Malek Alioua; Valérie Cognat; Vladimir Brukhin; Csaba Koncz; Ueli Grossniklaus; Jean Molinier; Pascal Genschik
Protein ubiquitylation regulates a broad variety of biological processes in all eukaryotes. Recent work identified a novel class of cullin‐containing ubiquitin ligases (E3s) composed of CUL4, DDB1, and one WD40 protein, believed to act as a substrate receptor. Strikingly, CUL4‐based E3 ligases (CRL4s) have important functions at the chromatin level, including responses to DNA damage in metazoans and plants and, in fission yeast, in heterochromatin silencing. Among putative CRL4 receptors we identified MULTICOPY SUPPRESSOR OF IRA1 (MSI1), which belongs to an evolutionary conserved protein family. MSI1‐like proteins contribute to different protein complexes, including the epigenetic regulatory Polycomb repressive complex 2 (PRC2). Here, we provide evidence that Arabidopsis MSI1 physically interacts with DDB1A and is part of a multimeric protein complex including CUL4. CUL4 and DDB1 loss‐of‐function lead to embryo lethality. Interestingly, as in fis class mutants, cul4 mutants exhibit autonomous endosperm initiation and loss of parental imprinting of MEDEA, a target gene of the Arabidopsis PRC2 complex. In addition, after pollination both MEDEA transcript and protein accumulate in a cul4 mutant background. Overall, our work provides the first evidence of a physical and functional link between a CRL4 E3 ligase and a PRC2 complex, thus indicating a novel role of ubiquitylation in the repression of gene expression.