Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Esther P. Jane is active.

Publication


Featured researches published by Esther P. Jane.


Journal of Pharmacology and Experimental Therapeutics | 2006

Coadministration of Sorafenib with Rottlerin Potently Inhibits Cell Proliferation and Migration in Human Malignant Glioma Cells

Esther P. Jane; Daniel R. Premkumar; Ian F. Pollack

Mitogen-activated protein kinase (MAPK) and protein kinase C (PKC) are activated in the majority of gliomas and contribute to tumor cell growth and survival. Sorafenib (Bay43-9006; Nexavar) is a dual-action Raf and vascular endothelial growth factor receptor inhibitor that blocks receptor phosphorylation and MAPK-mediated signaling and inhibits growth in a number of tumor types. Because our initial studies of this agent in a series of glioma cell lines showed only partial growth inhibition at clinically achievable concentrations, we questioned whether inhibition of PKC signaling using the PKC-δ inhibitor rottlerin might potentiate therapeutic efficacy. Proliferation assays, apoptosis induction studies, and Western immunoblot analysis were conducted in cells treated with sorafenib and rottlerin as single agents or in combination. Sorafenib and rottlerin reduced proliferation in all cell lines when used as single agents, and the combination produced marked potentiation of growth inhibition. Flow-cytometric measurements of cells stained with Annexin V-propidium iodide and immunocytochemical assessment of cytochrome c and apoptosis-inducing factor release demonstrated that addition of rottlerin resulted in significantly higher levels of apoptosis than sorafenib alone. In addition, the combination of sorafenib and rottlerin reduced or completely inhibited the phosphorylation of extracellular signal-regulated kinase and Akt and down-regulated cell cycle regulatory proteins such as cyclin-D1, cyclin-D3, cyclin-dependent kinase (cdk)4, and cdk6 in a dose- and time-dependent manner. Our results clearly indicate that inhibition of PKC-δ signaling enhances the antiproliferative effect of sorafenib in malignant human glioma cell lines and support the examination of combinations of signaling inhibitors in these tumors.


Macromolecular Bioscience | 2010

Enhanced Differentiation of Embryonic and Neural Stem Cells to Neuronal Fates on Laminin Peptides Doped Polypyrrole

Ling Zhang; William R. Stauffer; Esther P. Jane; Paul Sammak; Xinyan Tracy Cui

PPy is a conducting polymer material that has been widely investigated for biomedical applications. hESCs and adult rNSCs were grown on four PPy surfaces doped with PSS or peptide from laminin (p20, p31, and a mixture of p20 and p31) respectively. After 7 d, both PPy/p20 and PPy/p31 promoted neuroectoderm formation from hESCs. After 14 d of culture, surfaces containing p20 showed the highest percentage of neuronal differentiation from hESC, while the PPy/p31 surface showed better cell attachment and spreading. In rNSCs cultures, a higher percentage of neurons were found on the PPy/p20 surface than other surfaces at 7 and 14 d. For differentiated neurons, p20 promoted both the primary and total neurite outgrowth. Longer primary neurites were found on p20-containing surfaces and a longer total neurite length was found on PPy/p20 surface. These results demonstrated that, by doping PPy with different bioactive peptides, differentiation of stem cells seeded at different stages of development is affected.


Molecular Carcinogenesis | 2006

Synergistic interaction between 17-AAG and phosphatidylinositol 3-kinase inhibition in human malignant glioma cells

Daniel R. Premkumar; Beth Arnold; Esther P. Jane; Ian F. Pollack

The phosphatidylinositol 3′‐kinase (PI3K)/Akt pathway is often constitutively activated in malignant glioma cells, in many cases as a result of mutation of phosphatase and tensin homologue deleted on chromosome ten (PTEN), an endogenous inhibitor of Akt, which renders tumor cells resistant to cytotoxic insults, including those related to anticancer drugs. Pharmacological inhibition of this pathway may potentially restore or augment the effectiveness of conventional chemotherapy or other signaling‐targeted agents. Because the heat shock protein (HSP) is involved in the conformational maturation of a number of signaling proteins critical to the proliferation of malignant glioma cells, we hypothesized that the combination of the PI3K inhibitor LY294002 and the HSP90 inhibitor 17‐allyl‐aminogeldanamycin (17‐AAG) would promote glioma cytotoxicity by decreasing both the activation status and levels of Akt, as well as downregulating the levels of other relevant signaling effectors. We, therefore, examined the effects of LY294002 and 17‐AAG, alone and in combination, on signal transduction and apoptosis in a series of malignant glioma cell lines. Simultaneous exposure to these inhibitors significantly induced cell death, and irreversibly inhibited proliferative activity and colony forming ability of the glioma cell lines. Quantitative analysis revealed that enhancement by LY294002 of 17‐AAG‐induced cytotoxicity was synergistic, leading to a pronounced increase in active caspase‐3 and poly (adenosine diphophate‐ribose) polymerase (PARP) cleavage together with the release of cytochrome c and apoptosis inducing factor (AIF). No significant growth inhibition or caspase activation was seen in control cells. The enhanced cytotoxicity of this combination was associated with diminished Akt activation and a significant downregulation of epidermal growth factor receptor (EGFR), Raf‐1, and mitogen activated protein kinase. Combination of 17‐AAG and LY294002 did not modify phospho‐JNK/SPK and phospho‐p38. Cells exposed to 17‐AAG and LY294002 displayed a significant reduction in cell‐cycle regulatory proteins, such as retinoblastoma (Rb), cyclin dependent kinase (CDK)4, CDK6, cyclin D1, and cyclin D3. Taken together, these findings suggest that the PI3K/Akt pathway plays a critical role in regulating the apoptotic response to 17‐AAG and that targeting this pathway could provide a potent strategy to treat patients with malignant gliomas.


Molecular Carcinogenesis | 2013

Bortezomib-induced sensitization of malignant human glioma cells to vorinostat-induced apoptosis depends on reactive oxygen species production, mitochondrial dysfunction, Noxa upregulation, Mcl-1 cleavage, and DNA damage.

Daniel R. Premkumar; Esther P. Jane; Naomi R. Agostino; Joseph D. DiDomenico; Ian F. Pollack

Glioblastomas are invasive tumors with poor prognosis despite current therapies. Histone deacetylase inhibitors (HDACIs) represent a class of agents that can modulate gene expression to reduce tumor growth, and we and others have noted some antiglioma activity from HDACIs, such as vorinostat, although insufficient to warrant use as monotherapy. We have recently demonstrated that proteasome inhibitors, such as bortezomib, dramatically sensitized highly resistant glioma cells to apoptosis induction, suggesting that proteasomal inhibition may be a promising combination strategy for glioma therapeutics. In this study, we examined whether bortezomib could enhance response to HDAC inhibition in glioma cells. Although primary cells from glioblastoma multiforme (GBM) patients and established glioma cell lines did not show significant induction of apoptosis with vorinostat treatment alone, the combination of vorinostat plus bortezomib significantly enhanced apoptosis. The enhanced efficacy was due to proapoptotic mitochondrial injury and increased generation of reactive oxygen species. Our results also revealed that combination of bortezomib with vorinostat enhanced apoptosis by increasing Mcl‐1 cleavage, Noxa upregulation, Bak and Bax activation, and cytochrome c release. Further downregulation of Mcl‐1 using shRNA enhanced cell killing by the bortezomib/vorinostat combination. Vorinostat induced a rapid and sustained phosphorylation of histone H2AX in primary GBM and T98G cells, and this effect was significantly enhanced by co‐administration of bortezomib. Vorinostat/bortezomib combination also induced Rad51 downregulation, which plays an important role in the synergistic enhancement of DNA damage and apoptosis. The significantly enhanced antitumor activity that results from the combination of bortezomib and HDACIs offers promise as a novel treatment for glioma patients.


Journal of Pharmacology and Experimental Therapeutics | 2012

ABT-737 synergizes with bortezomib to induce apoptosis, mediated by Bid cleavage, Bax activation and mitochondrial dysfunction in an Akt-dependent context in malignant human glioma cell lines

Daniel R. Premkumar; Esther P. Jane; Joseph D. DiDomenico; Natalie Vukmer; Naomi R. Agostino; Ian F. Pollack

We observed that glioma cells are differentially sensitive to N-{4-[4-(4′-chloro-biphenyl-2-ylmethyl)-piperazin-1-yl]-benzoyl}-4-(3-dimethylamino-1-phenylsulfanylmethyl-propylamino)-3-nitro-benzenesulfonamide (ABT-737) and administration of ABT-737 at clinically achievable doses failed to induce apoptosis. Although elevated Bcl-2 levels directly correlated with sensitivity to ABT-737, overexpression of Bcl-2 did not influence sensitivity to ABT-737. To understand the molecular basis for variable and relatively modest sensitivity to the Bcl-2 homology domain 3 mimetic drug ABT-737, the abundance of Bcl-2 family members was assayed in a panel of glioma cell lines. Bcl-2 family member proteins, Bcl-xL, Bcl-w, Mcl-1, Bax, Bak, Bid, and Noxa, were found to be expressed ubiquitously at similar levels in all cell lines tested. We then examined the contribution of other apoptosis-resistance pathways to ABT-737 resistance. Bortezomib, an inhibitor of nuclear factor-kappaB (NF-κB), was found to enhance sensitivity of ABT-737 in phosphatase and tensin homolog on chromosome 10 (PTEN)-wild type, but not PTEN-mutated glioma cell lines. We therefore investigated the association between phosphatidylinositol 3-kinase (PI3K)/Akt activation and resistance to the combination of ABT-737 and bortezomib in PTEN-deficient glioma cells. Genetic and pharmacological inhibition of PI3K inhibition sensitized PTEN-deficient glioma cells to bortezomib- and ABT-737-induced apoptosis by increasing cleavage of Bid protein, activation and oligomerization of Bax, and loss of mitochondrial membrane potential. Our data further suggested that PI3K/Akt-dependent protection may occur upstream of the mitochondria. This study demonstrates that interference with multiple apoptosis-resistance signaling nodes, including NF-κB, Akt, and Bcl-2, may be required to induce apoptosis in highly resistant glioma cells, and therapeutic strategies that target the PI3K/Akt pathway may have a selective role for cancers lacking PTEN function.


Molecular Cancer Therapeutics | 2013

YM-155 Potentiates the Effect of ABT-737 in Malignant Human Glioma Cells via Survivin and Mcl-1 Downregulation in an EGFR-Dependent Context

Esther P. Jane; Daniel R. Premkumar; Joseph D. DiDomenico; Bo Hu; Shi Yuan Cheng; Ian F. Pollack

Antiapoptotic proteins are commonly overexpressed in gliomas, contributing to therapeutic resistance. We recently reported that clinically achievable concentrations of the Bcl-2/Bcl-xL inhibitor ABT-737 failed to induce apoptosis in glioma cells, with persistent expression of survivin and Mcl-1. To address the role of these mediators in glioma apoptosis resistance, we analyzed the effects of YM-155, a survivin suppressant, on survival on a panel of glioma cell lines. YM-155 inhibited cell growth and downregulated survivin and Mcl-1 in a dose- and cell line–dependent manner. While U373, LN18, LNZ428, T98G, LN229, and LNZ308 cells exhibited an IC50 of 10 to 75 nmol/L, A172 cells were resistant (IC50 ∼ 250 nmol/L). No correlation was found between sensitivity to YM-155 and baseline expression of survivin or cIAP-1/cIAP-2/XIAP. However, strong correlation was observed between EGF receptor (EGFR) activation levels and YM-155 response, which was confirmed using EGFR-transduced versus wild-type cells. Because we postulated that decreasing Mcl-1 expression may enhance glioma sensitivity to ABT-737, we examined whether cotreatment with YM-155 promoted ABT-737 efficacy. YM-155 synergistically enhanced ABT-737–induced cytotoxicity and caspase-dependent apoptosis. Downregulation of Mcl-1 using short hairpin RNA also enhanced ABT-737–inducing killing, confirming an important role for Mcl-1 in mediating synergism between ABT-737 and YM-155. As with YM-155 alone, sensitivity to YM-155 and ABT-737 inversely correlated with EGFR activation status. However, sensitivity could be restored in highly resistant U87-EGFRvIII cells by inhibition of EGFR or its downstream pathways, highlighting the impact of EGFR signaling on Mcl-1 expression and the relevance of combined targeted therapies to overcome the multiple resistance mechanisms of these aggressive tumors. Mol Cancer Ther; 12(3); 326–38. ©2013 AACR.


Journal of Pharmacology and Experimental Therapeutics | 2014

Inhibition of Phosphatidylinositol 3-Kinase/AKT Signaling by NVP-BKM120 Promotes ABT- 737-induced toxicity in a caspase-dependent manner through mitochondrial dysfunction and DNA damage response in established and primary cultured glioblastoma cells

Esther P. Jane; Daniel R. Premkumar; Alejandro Morales; Kimberly A. Foster; Ian F. Pollack

Identification of therapeutic strategies that might enhance the efficacy of B-cell lymphoma-2 (Bcl-2) inhibitor ABT-737 [N-{4-[4-(4-chloro-biphenyl-2-ylmethyl)-piperazin-1-yl]-benzoyl}-4-(3-dimethylamino-1-phenylsulfanylmethyl-propylamino)-3-nitro-benzenesulfonamide] is of great interest in many cancers, including glioma. Our recent study suggested that Akt is a crucial mediator of apoptosis sensitivity in response to ABT-737 in glioma cell lines. Inhibitors of phosphatidylinositol 3-kinase (PI3K)/Akt are currently being assessed clinically in patients with glioma. Because PI3K/Akt inhibition would be expected to have many proapoptotic effects, we hypothesized that there may be unique synergy between PI3K inhibitors and Bcl-2 homology 3 mimetics. Toward this end, we assessed the combination of the PI3K/Akt inhibitor NVP-BKM120 [5-(2,6-dimorpholinopyrimidin-4-yl)-4-(trifluoromethyl)pyridin-2-amine] and the Bcl-2 family inhibitor ABT-737 in established and primary cultured glioma cells. We found that the combined treatment with these agents led to a significant activation of caspase-8 and -3, PARP, and cell death, irrespective of PTEN status. The enhanced lethality observed with this combination also appears dependent on the loss of mitochondrial membrane potential and release of cytochrome c, smac/DIABLO, and apoptosis-inducing factor to the cytosol. Further study revealed that the upregulation of Noxa, truncation of Bid, and activation of Bax and Bak caused by these inhibitors were the key factors for the synergy. In addition, we demonstrated the release of proapoptotic proteins Bim and Bak from Mcl-1. We found defects in chromosome segregation leading to multinuclear cells and loss of colony-forming ability, suggesting the potential use of NVP-BKM120 as a promising agent to improve the anticancer activities of ABT-737.


Journal of Pharmacology and Experimental Therapeutics | 2009

Abrogation of Mitogen-Activated Protein Kinase and Akt Signaling by Vandetanib Synergistically Potentiates Histone Deacetylase Inhibitor-Induced Apoptosis in Human Glioma Cells

Esther P. Jane; Daniel R. Premkumar; Steven O. Addo-Yobo; Ian F. Pollack

Vandetanib is a multitargeted tyrosine kinase inhibitor. Our initial studies demonstrated that this agent blocks vascular endothelial growth factor receptor, epidermal growth factor receptor, and platelet-derived growth factor receptor phosphorylation and mitogen-activated protein kinase (MAPK)-mediated signaling in glioma cell lines in a dose-dependent manner. Despite these effects, we observed that vandetanib had little effect on apoptosis induction at clinically achievable concentrations. Because histone deacetylase inhibitors (HDACIs) have been suggested to regulate signaling protein transcription and downstream interactions via modulation of protein chaperone function through the 90-kDa heat shock protein, we investigated whether combining vandetanib with an HDACI could synergistically potentiate signaling pathway inhibition and apoptosis induction in a panel of malignant human glioma cell lines. Proliferation assays, apoptosis induction studies, and Western immunoblot analysis were conducted in cells treated with vandetanib and HDACIs as single agents or in combination. Vandetanib and suberoylanalide hydroxamic acid reduced proliferation in all cell lines when used as single agents, and the combination produced marked potentiation of growth inhibition as assessed by combinatorial methods. These effects were paralleled by potentiation of Akt signaling inhibition and apoptosis induction. Our results indicate that inhibition of histone deacetylation enhances the antiproliferative effect of vandetanib in malignant human glioma cell lines by enhancing inhibition of MAPK, Akt, and other downstream effectors that may have application in combinatorial therapeutics for these tumors.


Journal of Carcinogenesis | 2010

Dasatinib synergizes with JSI-124 to inhibit growth and migration and induce apoptosis of malignant human glioma cells.

Daniel R. Premkumar; Esther P. Jane; Naomi R. Agostino; Joseph L. Scialabba; Ian F. Pollack

Background: Src family kinases (SFK) collectively regulate a variety of cellular functions in many cancer types, including proliferation, invasion, motility, survival, differentiation, and angiogenesis. Although Dasatinib (BMS-354825), an ATP-competitive, small molecule tyrosine kinase inhibitor, suppresses the activity of SFKs at nanomolar concentrations, IC50 values for antiproliferative effects in glioma cell lines were well above the clinically achievable range, suggesting the need to interfere with other components of receptor-induced downstream signaling in order to achieve an optimal therapeutic effect. Materials and Methods: The cytotoxic effects of combining Src and STAT3 inhibition on glioma cell lines were evaluated using assays to measure cell proliferation, apoptosis and migration. Western blotting and immunocytochemistry was used to monitor its effects on cell signaling and morphology. Results: Silencing Src and STAT3 expression each partially inhibited cell proliferation and migration. In addition, JSI-124 significantly enhanced the efficacy of dasatinib in vitro. Combination of dasatinib and JSI-124 achieved significant inhibition of migration in all cell lines, which correlated with the inhibition of Src and downstream mediators of adhesion (e.g. focal adhesion kinase). Cells exposed to dasatinib and JSI-124 exhibited morphological changes that were consistent with an upstream role for Src in regulating focal adhesion complexes. Conclusions: Targeting the Src and STAT pathways may contribute to the treatment of cancers that demonstrate increased levels of these signaling mediators, including malignant human glioma. Clinical studies in these tumor types are warranted.


Cancer Letters | 2008

The heat shock protein antagonist 17-AAG potentiates the activity of enzastaurin against malignant human glioma cells.

Esther P. Jane; Ian F. Pollack

Recent studies have suggested that the proliferation of malignant gliomas may result from activation of protein kinase C (PKC)-mediated pathways. Enzastaurin (LY317615), an acyclic bisindolylmaleimide, is an oral inhibitor of PKCbeta as well as other isoforms. The initial objective of this study was to assess the efficacy of enzastaurin in a series of malignant human glioma cell lines with diverse genomic alterations. Although enzastaurin independently produced a dose-dependent inhibition of cellular proliferation and decreased cell viability in each of the glioma cell lines examined, and partially down-regulated Akt and GSK3beta phosphorylation, median effective concentrations were at the upper limits of, or above, the clinically achievable range in all cell lines tested. We therefore examined whether the efficacy of enzastaurin could be enhanced by combination with the HSP90 antagonist, 17-AAG, which inhibits Akt and other signaling intermediates by a distinct mechanism. In comparison to the effect of enzastaurin alone, combination of enzastaurin with 17-AAG led to marked enhancement of antiproliferative and cytotoxic effects. Simultaneous exposure to both agents significantly increased the release of cytochrome c, as well as caspase 3 activation, Bax cleavage, and inhibition of Akt phosphorylation. Cells exposed to enzastaurin and 17-AAG also displayed a significant reduction in cell cycle regulatory proteins, such as CDK4 and CDK6. Taken together, these findings suggest that the efficacy of enzastaurin can be potentiated by the addition of 17-AAG, and indicate that combining molecularly targeted therapies may provide a more effective strategy than single-agent therapy to treat patients with malignant gliomas.

Collaboration


Dive into the Esther P. Jane's collaboration.

Top Co-Authors

Avatar

Ian F. Pollack

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul Sammak

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Philip Sutera

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge