Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Esther Parada is active.

Publication


Featured researches published by Esther Parada.


Antioxidants & Redox Signaling | 2013

The microglial α7-acetylcholine nicotinic receptor is a key element in promoting neuroprotection by inducing heme oxygenase-1 via nuclear factor erythroid-2-related factor 2.

Esther Parada; Javier Egea; Izaskun Buendia; Pilar Negredo; Ana C. Cunha; Silvia Cardoso; Miguel P. Soares; Manuela G. López

AIMS We asked whether the neuroprotective effect of cholinergic microglial stimulation during an ischemic event acts via a mechanism involving the activation of nuclear factor erythroid-2-related factor 2 (Nrf2) and/or the expression of its target cytoprotective gene, heme oxygenase-1 (HO-1). Specifically, the protective effect of the pharmacologic alpha-7 nicotinic acetylcholine receptor (α7 nAChR) agonist PNU282987 was analyzed in organotypic hippocampal cultures (OHCs) subjected to oxygen and glucose deprivation (OGD) in vitro as well as in photothrombotic stroke in vivo. RESULTS OHCs exposed to OGD followed by reoxygenation elicited cell death, measured by propidium iodide and 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide staining. Activation of α7 nAChR by PNU282987, after OGD, reduced cell death, reactive oxygen species production, and tumor necrosis factor release. This was associated with induction of HO-1 expression, an effect reversed by α-bungarotoxin and by tin-protoporphyrin IX. The protective effect of PNU282987 was lost in microglial-depleted OHCs as well as in OHCs from Nrf2-deficient-versus-wild-type mice, an effect associated with suppression of HO-1 expression in microglia. Administration of PNU282987 1 h after induction of photothrombotic stroke in vivo reduced the infarct size and improved motor skills in Hmox1(lox/lox) mice that express normal levels of HO-1, but not in LysM(Cre)Hmox1(Δ/Δ) in which HO-1 expression is inhibited in myeloid cells, including the microglia. INNOVATION This study suggests the participation of the microglial α7 nAChR in the brain cholinergic anti-inflammatory pathway. CONCLUSION Activation of the α7 nAChR/Nrf2/HO-1 axis in microglia regulates neuroinflammation and oxidative stress, affording neuroprotection under brain ischemic conditions.


Biochemical Pharmacology | 2015

Anti-inflammatory role of microglial alpha7 nAChRs and its role in neuroprotection.

Javier Egea; Izaskun Buendia; Esther Parada; Elisa Navarro; Rafael León; Manuela G. López

Nicotinic acetylcholine receptors (nAChRs) are widely distributed throughout the central nervous system, being expressed in neurons and non-neuronal cells, where they participate in a variety of physiological responses like memory, learning, locomotion, attention, among others. We will focus on the α7 nAChR subtype, which has been implicated in neuroprotection, synaptic plasticity and neuronal survival, and is considered as a potential therapeutic target for several neurological diseases. Oxidative stress and neuroinflammation are currently considered as two of the most important pathological mechanisms common in neurodegenerative diseases such as Alzheimer, Parkinson or Huntington diseases. In this review, we will first analysed the distribution and expression of nAChR in mammalian brain. Then, we focused on the function of the α7 nAChR subtype in neuronal and non-neuronal cells and its role in immune responses (cholinergic anti-inflammatory pathway). Finally, we will revise the anti-inflammatory pathway promoted via α7 nAChR activation that is related to recruitment and activation of Jak2/STAT3 pathway, which on the one hand inhibits NF-κB nuclear translocation, and on the other hand, activates the master regulator of oxidative stress Nrf2/HO-1. This review provides a profound insight into the role of the α7 nAChR subtype in microglia and point out to microglial α7/HO-1 pathway as an anti-inflammatory therapeutic target.


Neurochemistry International | 2012

Guanosine protects human neuroblastoma SH-SY5Y cells against mitochondrial oxidative stress by inducing heme oxigenase-1 via PI3K/Akt/GSK-3β pathway.

Tharine Dal-Cim; Simone Molz; Javier Egea; Esther Parada; Alejandro Romero; Josiane Budni; María Dolores Martín de Saavedra; Laura del Barrio; Carla I. Tasca; Manuela G. López

Mitochondrial perturbation and oxidative stress are key factors in neuronal vulnerability in several neurodegenerative diseases or during brain ischemia. Here we have investigated the protective mechanism of action of guanosine, the guanine nucleoside, in a human neuroblastoma cell line, SH-SY5Y, subjected to mitochondrial oxidative stress. Blockade of mitochondrial complexes I and V with rotenone plus oligomycin (Rot/oligo) caused a significant decrease in cell viability and an increase in ROS production. Guanosine that the protective effect of guanosine incubated concomitantly with Rot/oligo abolished Rot/oligo-induced cell death and ROS production in a concentration dependent manner; maximum protection was achieved at the concentration of 1mM. The cytoprotective effect afforded by guanosine was abolished by adenosine A(1) or A(2A) receptor antagonists (DPCPX or ZM241385, respectively), or by a large (big) conductance Ca(2+)-activated K(+) channel (BK) blocker (charybdotoxin). Evaluation of signaling pathways showed that the protective effect of guanosine was not abolished by a MEK inhibitor (PD98059), by a p38(MAPK) inhibitor (SB203580), or by a PKC inhibitor (cheleritrine). However, when blocking the PI3K/Akt pathway with LY294002, the neuroprotective effect of guanosine was abolished. Guanosine increased Akt and p-Ser-9-GSK-3β phosphorylation confirming this pathway plays a key role in guanosines neuroprotective effect. Guanosine induced the antioxidant enzyme heme oxygenase-1 (HO-1) expression. The protective effects of guanosine were prevented by heme oxygenase-1 inhibitor, SnPP. Moreover, bilirubin, an antioxidant and physiologic product of HO-1, is protective against mitochondrial oxidative stress. In conclusion, our results show that guanosine can afford protection against mitochondrial oxidative stress by a signaling pathway that implicates PI3K/Akt/GSK-3β proteins and induction of the antioxidant enzyme HO-1.


Free Radical Biology and Medicine | 2010

Poststress treatment with PNU282987 can rescue SH-SY5Y cells undergoing apoptosis via α7 nicotinic receptors linked to a Jak2/Akt/HO-1 signaling pathway.

Esther Parada; Javier Egea; Alejandro Romero; Laura del Barrio; Antonio G. García; Manuela G. López

Most neuroprotection studies with nicotinic agonists have shown efficacy when given before the stressor. Here we have investigated whether the α7 nicotinic acetylcholine receptor (nAChR) agonist PNU282987 can prevent cell death once the cells have already undergone an oxidative stress. The combination of rotenone (30 μM) plus oligomycin A (10 μM) (rot/oligo) has been used as an in vitro model of mitochondrial ROS production. SH-SY5Y cells incubated with rot/oligo for 8h and left for another 16 h in MEM/F-12 experienced 30% apoptotic cell death. Under these experimental conditions, PNU282987 administered after rot/oligo (PST/PNU) prevented cell death in a concentration-dependent manner. Co-incubation of PNU282987 with 100 nM methyllycaconitine (a selective α7 nAChR antagonist), 10 μM mecamylamine (a nonselective nAChR antagonist), 3 μM LY294002 (a PI3K inhibitor), or 10 μM AG490 (a Jak2 inhibitor) prevented the protection afforded by PST/PNU. Moreover, the increase in ROS, active caspase-3, and apoptosis caused by rot/oligo was also prevented by PST/PNU. Furthermore, PNU282987 increased the expression of heme oxygenase-1 (HO-1), a critical cell defense enzyme against oxidative stress; this increase was prevented by AG490 or LY294002. The HO-1 inhibitor Sn(IV) protoporphyrin-IX also inhibited the PST/PNU protecting effects. These results suggest that activation of α7 nAChR linked to the Jak2/PI3K/Akt cascade induces the antioxidant enzyme HO-1 to provide neuroprotection.


Psychoneuroendocrinology | 2013

Nrf2 participates in depressive disorders through an anti-inflammatory mechanism

María Dolores Martín-de-Saavedra; Josiane Budni; Mauricio P. Cunha; Vanessa Gómez-Rangel; Silvia Lorrio; Laura del Barrio; Isabel Lastres-Becker; Esther Parada; Rosa M. Tordera; Ana Lúcia S. Rodrigues; Antonio Cuadrado; Manuela G. López

A causative relationship between inflammation and depression is gradually gaining consistency. Because Nrf2 participates in inflammation, we hypothesized that Nrf2 could play a role in depressive disorders. In this study, we have observed that Nrf2 deletion in mice results in: (i) a depressive-like behavior evaluated as an increase in the immobility time in the tail-suspension test and by a decrease in the grooming time in the splash test, (ii) reduced levels of dopamine and serotonin and increased levels of glutamate in the prefrontal cortex, (iii) altered levels of proteins associated to depression such as VEGF and synaptophysin and (iv) microgliosis. Furthermore, treatment of Nrf2 knockout mice with the anti-inflammatory drug rofecoxib reversed their depressive-like behavior, while induction of Nrf2 by sulforaphane, in an inflammatory model of depression elicited by LPS, afforded antidepressant-like effects. In conclusion, our results indicate that chronic inflammation due to a deletion of Nrf2 can lead to a depressive-like phenotype while induction of Nrf2 could become a new and interesting target to develop novel antidepressive drugs.


Journal of Pineal Research | 2014

Neuroprotective effect of melatonin against ischemia is partially mediated by alpha-7 nicotinic receptor modulation and HO-1 overexpression

Esther Parada; Izaskun Buendia; Rafael León; Pilar Negredo; Alejandro Romero; Antonio Cuadrado; Manuela G. López; Javier Egea

Melatonin has been widely studied as a protective agent against oxidative stress. However, the molecular mechanisms underlying neuroprotection in neurodegeneration and ischemic stroke are not yet well understood. In this study, we evaluated the neuroprotective/antioxidant mechanism of action of melatonin in organotypic hippocampal cultures (OHCs) as well as in photothrombotic stroke model in vivo. Melatonin (0.1, 1, and 10 μm) incubated postoxygen and glucose deprivation (OGD) showed a concentration‐dependent protection; maximum protection was achieved at 10 μm (90% protection). Next, OHCs were exposed to 10 μm melatonin at different post‐OGD times; the protective effect of melatonin was maintained at 0, 1, and 2 hr post‐OGD treatment, but it was lost at 6 hr post‐OGD. The protective effect of melatonin and the reduction in OGD‐induced ROS were prevented by luzindole (melatonin antagonist) and α‐bungarotoxin (α‐Bgt, a selective α7 nAChR antagonist). In Nrf2 knockout mice, the protective effect of melatonin was reduced by 40% compared with controls. Melatonin, incubated 0, 1, and 2 hr post‐OGD, increased the expression of heme oxygenase‐1 (HO‐1), and this overexpression was prevented by luzindole and α‐bungarotoxin. Finally, administration of 15 mg/kg melatonin following the induction of photothrombotic stroke in vivo, reduced infarct size (50%), and improved motor skills; this effect was partially lost in 0.1 mg/kg methyllycaconitine (MLA, selective α7 nAChR antagonist)‐treated mice. Taken together, these results demonstrate that postincubation of melatonin provides a protective effect that, at least in part, depends on nicotinic receptor activation and overexpression of HO‐1.


Journal of Neurochemistry | 2013

Guanosine controls inflammatory pathways to afford neuroprotection of hippocampal slices under oxygen and glucose deprivation conditions.

Tharine Dal-Cim; Fabiana K. Ludka; Wagner C. Martins; Charlise Reginato; Esther Parada; Javier Egea; Manuela G. López; Carla I. Tasca

Guanosine (GUO) is an endogenous modulator of glutamatergic excitotoxicity and has been shown to promote neuroprotection in in vivo and in vitro models of neurotoxicity. This study was designed to understand the neuroprotective mechanism of GUO against oxidative damage promoted by oxygen/glucose deprivation and reoxygenation (OGD). GUO (100 μM) reduced reactive oxygen species production and prevented mitochondrial membrane depolarization induced by OGD. GUO also exhibited anti‐inflammatory actions as inhibition of nuclear factor kappa B activation and reduction of inducible nitric oxide synthase induction induced by OGD. These GUO neuroprotective effects were mediated by adenosine A1 receptor, phosphatidylinositol‐3 kinase and MAPK/ERK. Furthermore, GUO recovered the impairment of glutamate uptake caused by OGD, an effect that occurred via a Pertussis toxin‐sensitive G‐protein‐coupled signaling, blockade of adenosine A2A receptors (A2AR), but not via A1 receptor. The modulation of glutamate uptake by GUO also involved MAPK/ERK activation. In conclusion, GUO, by modulating adenosine receptor function and activating MAPK/ERK, affords neuroprotection of hippocampal slices subjected to OGD by a mechanism that implicates the following: (i) prevention of mitochondrial membrane depolarization, (ii) reduction of oxidative stress, (iii) regulation of inflammation by inhibition of nuclear factor kappa B and inducible nitric oxide synthase, and (iv) promoting glutamate uptake.


Toxicological Sciences | 2011

Neurotoxicity Induced by Okadaic Acid in the Human Neuroblastoma SH-SY5Y Line Can Be Differentially Prevented by α7 and β2* Nicotinic Stimulation

Laura del Barrio; María Dolores Martín-de-Saavedra; Alejandro Romero; Esther Parada; Javier Egea; Jesús Avila; John Michael McIntosh; Susan Wonnacott; Manuela G. López

A good model of neuronal death that reproduces the characteristic tau (τ) hyperphosphorylation of Alzheimeŕs disease is the use of okadaic acid (OA). The aim of this study was to determine the contribution of α7 and β2* nicotinic acetylcholine receptor (nAChR) subtypes to neuroprotection against OA in the SH-SY5Y cell line by using the selective α7 and β2* nAChR agonists PNU 282987 and 5-Iodo-A85380, respectively. The results of this study show that both α7 and β2* nAChR can afford neuroprotection against OA-induced neurotoxicity. Protection mediated by α7 nAChRs was independent of Ca(2+) and involved the intracellular signaling pathway Janus Kinase-2/Phosphatidylinositol-3-kinase/Akt. When Ca(2+) entry was promoted through the α7 nAChR by using the α7-selective positive allosteric modulator PNU 120596, protection was lost. By contrast, protection mediated by β2* nAChRs was Ca(2+) dependent and implicated the signaling pathways PI3K/Akt and extracellular regulated kinase 1/2. Both α7 and β2* nAChR activation converged on downregulation of GSK-3β and reduction of τ phosphorylation in cells undergoing cell death induced by OA. Therefore, targeting nAChR could offer a strategy for reducing neurodegeneration secondary to hyperphosphorylation of protein τ.


Molecular Nutrition & Food Research | 2015

Microglial HO-1 induction by curcumin provides antioxidant, antineuroinflammatory, and glioprotective effects.

Esther Parada; Izaskun Buendia; Elisa Navarro; Carlos Avendaño; Javier Egea; Manuela G. López

SCOPE We have studied if curcumin can protect glial cells under an oxidative stress and inflammatory environment, which is known to be deleterious in neurodegeneration. METHODS AND RESULTS Primary rat glial cultures exposed to the combination of an oxidative (rotenone/oligomycin A) and a proinflammatory LPS stimuli reduced by 50% glial viability. Under these experimental conditions, curcumin afforded significant glial protection and reduction of reactive oxygen species; these effects were blocked by the HO-1 inhibitor tin protoporphyrin-IX (SnPP). These findings correlate with the observation that curcumin induced the antioxidative protein HO-1. Most interesting was the observation that the glial protective effects related to HO-1 induction were microglial specific as shown in glial cultures from LysM(Cre) Hmox(∆/∆) mice where curcumin lost its protective effect. Under LPS conditions, curcumin reduced the microglial proinflammatory markers iNOS and tumor necrosis factor, but increased the anti-inflammatory cytokine IL4. Analysis of the microglial phenotype showed that curcumin favored a ramified morphology toward a microglial alternative activated state against LPS insult also by a HO-1-dependent mechanism. CONCLUSION The curry constituent curcumin protects glial cells and promotes a microglial anti-inflammatory phenotype by a mechanism that implicates HO-1 induction; these effects may have impact on brain protection under oxidative and inflammatory conditions.


Journal of Medicinal Chemistry | 2014

New 5-unsubstituted dihydropyridines with improved CaV1.3 selectivity as potential neuroprotective agents against ischemic injury.

Giammarco Tenti; Esther Parada; Rafael León; Javier Egea; Sonia Martínez-Revelles; Ana M. Briones; Vellaisamy Sridharan; Manuela G. López; María Teresa Ramos; J. Carlos Menéndez

C5-unsubstituted-C6-aryl-1,4-dihydropyridines were prepared by a CAN-catalyzed multicomponent reaction from chalcones, β-dicarbonyl compounds, and ammonium acetate. These compounds were able to block Ca(2+) entry after a depolarizing stimulus and showed an improved Cav1.3/Cav1.2 selectivity in comparison with nifedipine. Furthermore, they were able to protect neuroblastoma cells against Ca(2+) overload and oxidative stress models. Their selectivity ratio makes them highly interesting for the treatment of neurological disorders where Ca(2+) dyshomeostasis and high levels of oxidative stress have been demonstrated. Furthermore, their low potency toward the cardiovascular channel subtype makes them safer by reducing their probable side effects, in comparison to classical 1,4-dihydropyridines. Some compounds afforded good protective profile in a postincubation model that simulates the real clinical situation of ictus patients, offering a therapeutic window of opportunity of great interest for patient recovery after a brain ischemic episode. Good activities were also found in acute ischemia/reperfusion models of oxygen and glucose deprivation.

Collaboration


Dive into the Esther Parada's collaboration.

Top Co-Authors

Avatar

Javier Egea

Autonomous University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Manuela G. López

Autonomous University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Izaskun Buendia

Autonomous University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Elisa Navarro

Autonomous University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Alejandro Romero

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Rafael León

Autonomous University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Pilar Negredo

Autonomous University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Antonio Cuadrado

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Antonio G. García

Autonomous University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Laura del Barrio

Autonomous University of Madrid

View shared research outputs
Researchain Logo
Decentralizing Knowledge