Esther Sebastián-González
University of São Paulo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Esther Sebastián-González.
European Journal of Wildlife Research | 2010
Esther Sebastián-González; José A. Sánchez-Zapata; Francisco Botella
The progressive lost of natural wetlands as a consequence of human activities has lead to the use of new habitats by the species linked to water presence. In Southeast Spain, thousands of irrigation ponds have been lately constructed to store water for agriculture and are used by waterbirds as an alternative habitat. For this study, breeding and wintering waterbirds were counted in a subset of irrigation ponds between 2002 and 2007. Breeding communities were more abundant than wintering communities, but they presented a similar richness and diversity. The ponds were selected by waterbirds according to their characteristics, and breeding communities were more selective than wintering communities. Our results enhance the importance of pond size (area), connectivity (distance to the nearest wetland) and habitat quality (resource offer and construction material) in the pond selection process. The presence and design of these impoundments could be playing a crucial role for some waterbirds species. Therefore, the long-term information provided here can be useful for establishing management strategies for these artificial wetlands.
Proceedings of the Royal Society of London. Series B, Biological Sciences | 2010
Esther Sebastián-González; José A. Sánchez-Zapata; Francisco Botella; Otso Ovaskainen
The distributional patterns of actively moving animals are influenced by the cues that the individuals use for choosing sites into which they settle. Individuals may gather information about habitat quality using two types of strategies, either directly assessing the relevant environmental factors, or using the presence of conspecifics or heterospecifics as an indirect measure of habitat quality. We examined patterns of heterospecific attraction with observational time-series data on a community of seven waterbird species breeding in artificial irrigation ponds. We fitted to the data a multivariate logistic regression model, which attributes the presence–absence of each species to a set of environmental and spatial covariates, to the presence of con- and heterospecifics in the previous year and to the presence of heterospecifics in the same year. All species showed a clear tendency to continue breeding in the same sites where they were observed in the previous year. Additionally, the presence of heterospecifics, both in the previous year and in the same year, generally increased the probability that the focal species was found breeding on a given pond. Our data thus give support for the heterospecific attraction hypothesis, though causal inference should be confirmed with manipulative experiments.
Ecology | 2016
Esther Sebastián-González; Marcos Moleón; Jean P. Gibert; Francisco Botella; Patricia Mateo-Tomás; Pedro P. Olea; Paulo R. Guimarães; JoséAntonio Sánchez-Zapata
Disentangling the processes that shape the organization of ecological assemblages and its implications for species coexistence is one of the foremost challenges of ecology. Although insightful advances have recently related community composition and structure with species coexistence in mutualistic and antagonistic networks, little is known regarding other species assemblages, such as those of scavengers exploiting carrion. Here we studied seven assemblages of scavengers feeding on ungulate carcasses in mainland Spain. We used dynamical models to investigate if community composition, species richness and structure (nestedness) affect species coexistence at carcasses. Scavenging networks showed a nested pattern in sites where highly efficient, obligate scavengers (i.e., vultures) were present and a non-nested pattern everywhere else. Griffon Vulture (Gyps fulvus) and certain meso-facultative mammalian scavengers (i.e., red fox, Vulpes vulpes, and stone marten, Martes foina) were the main species contributing to nestedness. Assemblages with vultures were also the richest ones in species. Nested species-rich assemblages with vulture presence were associated with high carcass consumption rates, indicating higher interspecific competition at the local scale. However, the proportion of species stopping the consumption of carrion (as derived from the competitive dynamic model) stabilized at high richness and nestedness levels. This suggests that high species richness and nestedness may characterize scavenging networks that are robust to high levels of interspecific competition for carrion. Some facilitative interactions driven by vultures and major facultative scavengers could be behind these observations. Our findings are relevant for understanding species coexistence in highly competitive systems.
European Journal of Wildlife Research | 2014
Juan Manuel Pérez-García; Esther Sebastián-González; Karen Luisa Alexander; José A. Sánchez-Zapata; Francisco Botella
Species occurrence and community structure are strongly influenced by multiple factors like habitat selection, species movement capabilities, competition, or conspecific and heterospecific attractions. More specifically, in waterbird communities, previous studies have identified the importance of environmental and structural characteristics of wetlands for their occupation and use. However, the effect of the surrounding landscape configuration remains unknown. In this article, we use a large network of artificial irrigation ponds to evaluate the importance of pond features in comparison to the effect of landscape and spatial configuration on the community at three different spatial scales. Our results show that landscape configuration has relatively little influence on structure of the waterbird community. Pond features were by far the most important variables to describe waterbird abundance and richness. At the species level, we detected differences in habitat preferences relating to species-specific ecological requirements. Our results highlight the importance of using a multiscale approach to understand and predict richness and abundance in waterbird communities. Our findings emphasize the need to maintain high-quality ponds to enhance their suitability for use as breeding and foraging sites.
Journal of Animal Ecology | 2012
Marcos Moleón; Esther Sebastián-González; José A. Sánchez-Zapata; Joan Real; Mathias M. Pires; José M. Gil-Sánchez; Jesús Bautista; Luís Palma; Patrick Bayle; Paulo R. Guimarães; Pedro Beja
1. A long-standing question in ecology is how natural populations respond to a changing environment. Emergent optimal foraging theory-based models for individual variation go beyond the population level and predict how its individuals would respond to disturbances that produce changes in resource availability. 2. Evaluating variations in resource use patterns at the intrapopulation level in wild populations under changing environmental conditions would allow to further advance in the research on foraging ecology and evolution by gaining a better idea of the underlying mechanisms explaining trophic diversity. 3. In this study, we use a large spatio-temporal scale data set (western continental Europe, 1968-2006) on the diet of Bonellis Eagle Aquila fasciata breeding pairs to analyse the predator trophic responses at the intrapopulation level to a prey population crash. In particular, we borrow metrics from studies on network structure and intrapopulation variation to understand how an emerging infectious disease [the rabbit haemorrhagic disease (RHD)] that caused the density of the eagles primary prey (rabbit Oryctolagus cuniculus) to dramatically drop across Europe impacted on resource use patterns of this endangered raptor. 4. Following the major RHD outbreak, substantial changes in Bonellis Eagles diet diversity and organisation patterns at the intrapopulation level took place. Dietary variation among breeding pairs was larger after than before the outbreak. Before RHD, there were no clusters of pairs with similar diets, but significant clustering emerged after RHD. Moreover, diets at the pair level presented a nested pattern before RHD, but not after. 5. Here, we reveal how intrapopulation patterns of resource use can quantitatively and qualitatively vary, given drastic changes in resource availability. 6. For the first time, we show that a pathogen of a prey species can indirectly impact the intrapopulation patterns of resource use of an endangered predator.
Bird Conservation International | 2013
Esther Sebastián-González; Cristina Fuentes; Marcos Ferrández; José L. Echevarrías; Andy J. Green
Summary Understanding habitat requirements is vital for developing successful management strategies for threatened species. In this study we analyse the habitat selection of two globally threatened waterbirds (Marbled Teal Marmaronetta angustirostris and White-headed Duck Oxyura leucocephala) coexisting in an internationally important wetland (El Hondo Natural Park, south-eastern Spain) at three spatial scales. We surveyed adults and broods of these species fortnightly during two consecutive years and we related density and presence of birds to several habitat variables. At a pond-selection scale, the density of both species was related to the surface area of the ponds, with Marbled Teal showing avoidance of medium-sized ponds, and White-headed Ducks strong selection for the largest ponds. Within ponds, Marbled Teal avoided open waters, and was mainly associated with Phragmites reedbeds, but also selected areas with saltmarsh and Scirpus vegetation, especially for brood-rearing. White-headed Duck made more use of deeper areas with open water, especially in winter, and Phragmites was the only emergent vegetation with which it associated. When breeding success was very high in 2000, strong creching of broods was observed in White-headed Duck, but not in Marbled Teal. In order to provide suitable habitat for both species, there is a need to maintain spatial diversity with a combination of large wetlands suitable for both species and small, vegetated ones suitable for the Marbled Teal.
Ecological Applications | 2016
Jomar M. Barbosa; Esther Sebastián-González; Gregory P. Asner; David E. Knapp; Christopher Anderson; Roberta E. Martin; Rodolfo Dirzo
Species interactions are susceptible to anthropogenic changes in ecosystems, but this has been poorly investigated in a spatially explicit manner in the case of plant parasitism, such as the omnipresent hemiparasitic mistletoe-host plant interactions. Analyzing such interactions at a large spatial scale may advance our understanding of parasitism patterns over complex landscapes. Combining high-resolution airborne imaging spectroscopy and LiDAR, we studied hemiparasite incidence within and among tree host stands to examine the prevalence and spatial distribution of hemiparasite load in ecosystems. Specifically, we aimed to assess: (1) detection accuracy of mistletoes on their oak hosts; (2) hemiparasitism prevalence within host tree canopies depending on tree height, and (3) spatial variation in hemiparasitism across fragmented woodlands, in a low-diversity mediterranean oak woodland in California, USA. We identified mistletoe infestations with 55-96% accuracy, and detected significant differences in remote-sensed spectra between oak trees with and without mistletoe infestation. We also found that host canopy height had little influence on infestation degree, whereas landscape-level variation showed consistent; non-random patterns: isolated host trees had twice the infestation load than did trees located at the core of forest fragments. Overall, we found that canopy exposure (i.e., lower canopy density or proximity to forest edge) is more important than canopy height for mistletoe infestation, and that by changing landscape structure, parasitic prevalence increased with woodland fragmentation. We conclude that reducing fragmentation in oak woodlands will minimize anthropogenic impact on mistletoe infestation at the landscape level. We argue that advanced remote sensing technology can provide baselines to quantitatively analyze and monitor parasite-host trajectories in light of global environmental change, and that this is a promising approach to be further tested in other temperate and tropical forests.
PLOS ONE | 2017
Mauricio Cantor; Mathias M. Pires; Flavia Maria Darcie Marquitti; Rafael L. G. Raimundo; Esther Sebastián-González; Patricia P. Coltri; S. Ivan Perez; Diego R. Barneche; Débora Y. C. Brandt; Kelly Nunes; Fábio G. Daura-Jorge; Sergio R. Floeter; Paulo R. Guimarães
Biological networks pervade nature. They describe systems throughout all levels of biological organization, from molecules regulating metabolism to species interactions that shape ecosystem dynamics. The network thinking revealed recurrent organizational patterns in complex biological systems, such as the formation of semi-independent groups of connected elements (modularity) and non-random distributions of interactions among elements. Other structural patterns, such as nestedness, have been primarily assessed in ecological networks formed by two non-overlapping sets of elements; information on its occurrence on other levels of organization is lacking. Nestedness occurs when interactions of less connected elements form proper subsets of the interactions of more connected elements. Only recently these properties began to be appreciated in one-mode networks (where all elements can interact) which describe a much wider variety of biological phenomena. Here, we compute nestedness in a diverse collection of one-mode networked systems from six different levels of biological organization depicting gene and protein interactions, complex phenotypes, animal societies, metapopulations, food webs and vertebrate metacommunities. Our findings suggest that nestedness emerge independently of interaction type or biological scale and reveal that disparate systems can share nested organization features characterized by inclusive subsets of interacting elements with decreasing connectedness. We primarily explore the implications of a nested structure for each of these studied systems, then theorize on how nested networks are assembled. We hypothesize that nestedness emerges across scales due to processes that, although system-dependent, may share a general compromise between two features: specificity (the number of interactions the elements of the system can have) and affinity (how these elements can be connected to each other). Our findings suggesting occurrence of nestedness throughout biological scales can stimulate the debate on how pervasive nestedness may be in nature, while the theoretical emergent principles can aid further research on commonalities of biological networks.
Ecology and Evolution | 2015
Esther Sebastián-González; Joshua Pang-Ching; Jomar M. Barbosa; Patrick J. Hart
Abstract The management of animal endangered species requires detailed information on their distribution and abundance, which is often hard to obtain. When animals communicate using sounds, one option is to use automatic sound recorders to gather information on the species for long periods of time with low effort. One drawback of this method is that processing all the information manually requires large amounts of time and effort. Our objective was to create a relatively “user‐friendly” (i.e., that does not require big programming skills) automatic detection algorithm to improve our ability to get basic data from sound‐emitting animal species. We illustrate our algorithm by showing two possible applications with the Hawaii ‘Amakihi, Hemignathus virens virens, a forest bird from the island of Hawaii. We first characterized the ‘Amakihi song using recordings from areas where the species is present in high densities. We used this information to train a classification algorithm, the support vector machine (SVM), in order to identify ‘Amakihi songs from a series of potential songs. We then used our algorithm to detect the species in areas where its presence had not been previously confirmed. We also used the algorithm to compare the relative abundance of the species in different areas where management actions may be applied. The SVM had an accuracy of 86.5% in identifying ‘Amakihi. We confirmed the presence of the ‘Amakihi at the study area using the algorithm. We also found that the relative abundance of ‘Amakihi changes among study areas, and this information can be used to assess where management strategies for the species should be better implemented. Our automatic song detection algorithm is effective, “user‐friendly” and can be very useful for optimizing the management and conservation of those endangered animal species that communicate acoustically.
Ecology and Evolution | 2017
Esther Sebastián-González; Mathias M. Pires; Camila I. Donatti; Paulo R. Guimarães; Rodolfo Dirzo
Abstract Species phenotypic traits affect the interaction patterns and the organization of seed‐dispersal interaction networks. Understanding the relationship between species characteristics and network structure help us understand the assembly of natural communities and how communities function. Here, we examine how species traits may affect the rules leading to patterns of interaction among plants and fruit‐eating vertebrates. We study a species‐rich seed‐dispersal system using a model selection approach to examine whether the rules underlying network structure are driven by constraints in fruit resource exploitation, by preferential consumption of fruits by the frugivores, or by a combination of both. We performed analyses for the whole system and for bird and mammal assemblages separately, and identified the animal and plant characteristics shaping interaction rules. The structure of the analyzed interaction network was better explained by constraints in resource exploitation in the case of birds and by preferential consumption of fruits with specific traits for mammals. These contrasting results when looking at bird–plant and mammal–plant interactions suggest that the same type of interaction is organized by different processes depending on the assemblage we focus on. Size‐related restrictions of the interacting species (both for mammals and birds) were the most important factors driving the interaction rules. Our results suggest that the structure of seed‐dispersal interaction networks can be explained using species traits and interaction rules related to simple ecological mechanisms.