Esther Trueblood
Amgen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Esther Trueblood.
Journal of Experimental Medicine | 2007
Hal Blumberg; Huyen Dinh; Esther Trueblood; James Pretorius; David Kugler; Ning Weng; Suzanne T. Kanaly; Jennifer E. Towne; Cynthia R. Willis; Melanie K. Kuechle; John E. Sims; Jacques J. Peschon
The interleukin (IL)-1 family members IL-1α, -1β, and -18 are potent inflammatory cytokines whose activities are dependent on heterodimeric receptors of the IL-1R superfamily, and which are regulated by soluble antagonists. Recently, several new IL-1 family members have been identified. To determine the role of one of these family members in the skin, transgenic mice expressing IL1F6 in basal keratinocytes were generated. IL1F6 transgenic mice exhibit skin abnormalities that are dependent on IL-1Rrp2 and IL-1RAcP, which are two members of the IL-1R family. The skin phenotype is characterized by acanthosis, hyperkeratosis, the presence of a mixed inflammatory cell infiltrate, and increased cytokine and chemokine expression. Strikingly, the combination of the IL-1F6 transgene with an IL1F5 deficiency results in exacerbation of the skin phenotype, demonstrating that IL-1F5 has antagonistic activity in vivo. Skin from IL1F6 transgenic, IL1F5−/− pups contains intracorneal and intraepithelial pustules, nucleated corneocytes, and dilated superficial dermal blood vessels. Additionally, expression of IL1RL2, -1F5, and -1F6 is increased in human psoriatic skin. In summary, dysregulated expression of novel agonistic and antagonistic IL-1 family member ligands can promote cutaneous inflammation, revealing potential novel targets for the treatment of inflammatory skin disorders.
Journal of Immunology | 2010
Hal Blumberg; Huyen Dinh; Charles Dean; Esther Trueblood; Keith Bailey; Donna Shows; Narasimharao Bhagavathula; Muhammad Nadeem Aslam; James Varani; Jennifer E. Towne; John E. Sims
Psoriasis is a common immune-mediated disease in European populations; it is characterized by inflammation and altered epidermal differentiation leading to redness and scaling. T cells are thought to be the main driver, but there is also evidence for an epidermal contribution. In this article, we show that treatment of mouse skin overexpressing the IL-1 family member, IL-1F6, with phorbol ester leads to an inflammatory condition with macroscopic and histological similarities to human psoriasis. Inflammatory cytokines thought to be important in psoriasis, such as TNF-α, IL-17A, and IL-23, are upregulated in the mouse skin. These cytokines are induced by and can induce IL-1F6 and related IL-1 family cytokines. Inhibition of TNF or IL-23 inhibits the increased epidermal thickness, inflammation, and cytokine production. Blockade of IL-1F6 receptor also resolves the inflammatory changes in human psoriatic lesional skin transplanted onto immunodeficient mice. These data suggest a role for IL-1F family members in psoriasis.
Journal of Immunology | 2008
Afsaneh Mozaffarian; Avery W. Brewer; Esther Trueblood; Irina G. Luzina; Nevins W. Todd; Sergei P. Atamas; Heather A. Arnett
Oncostatin M (OSM), an IL-6 family cytokine, has been implicated in a number of biological processes including the induction of inflammation and the modulation of extracellular matrix. In this study, we demonstrate that OSM is up-regulated in the bronchoalveolar lavage fluid of patients with idiopathic pulmonary fibrosis and scleroderma, and investigate the pathological consequences of excess OSM in the lungs. Delivery of OSM to the lungs of mice results in a significant recruitment of inflammatory cells, as well as a dose-dependent increase in collagen deposition in the lungs, with pathological correlates to characteristic human interstitial lung disease. To better understand the relationship between OSM-induced inflammation and OSM-induced fibrosis, we used genetically modified mice and show that the fibrotic response is largely independent of B and T lymphocytes, eosinophils, and mast cells. We further explored the mechanisms of OSM-induced inflammation and fibrosis using both protein and genomic array approaches, generating a “fibrotic footprint” for OSM that shows modulation of various matrix metalloproteinases, extracellular matrix components, and cytokines previously implicated in fibrosis. In particular, although the IL-4/IL-13 and TGF-β pathways have been shown to be important and intertwined of fibrosis, we show that OSM is capable of inducing lung fibrosis independently of these pathways. The demonstration that OSM is a potent mediator of lung inflammation and extracellular matrix accumulation, combined with the up-regulation observed in patients with pulmonary fibrosis, may provide a rationale for therapeutically targeting OSM in human disease.
Toxicologic Pathology | 2006
Gregory N. Dietsch; Chris R. Dipalma; Russell J. Eyre; Tuan Q. Pham; Karen M. Poole; Noah B. Pefaur; William D. Welch; Esther Trueblood; William D. Kerns; Suzanne T. Kanaly
The primary toxicity associated with repeated oral administration of the PDE4 inhibitor IC542 to the rat is an inflammatory response leading to tissue damage primarily in the gastrointestinal tract and mesentery. Although necrotizing vasculitis is frequently seen with other PDE4 inhibitors, blood vessel injury was rare following IC542 administration and was always associated with inflammation in the surrounding tissue. The incidence and severity of the histologic changes in these studies correlated with elevated peripheral blood leukocytes, serum IL-6, haptoglobin, and fibrinogen, and with decreased serum albumin. By monitoring haptoglobin, fibrinogen and serum albumin changes in IC542-treated rats, it was possible to identify rats with early histologic changes that were reversible. Since PDE4 inhibition is generally associated with anti-inflammatory activity, extensive inflammation in multiple tissues was unexpected with IC542. Co-administration of dexamethasone completely blocked IC542-induced clinical and histologic changes in the rat, confirming the toxicity resulted from inflammatory response. In addition, IC542 augmented release of the proinflammatory cytokine IL-6 in LPS-activated whole blood from rats but not monkeys or humans. The effect of IC542 on IL-6 release from rat leukocytes in vitro is consistent with the proinflammatory response observed in vivo and demonstrates species differences to PDE4 inhibition.
Molecular Cancer Therapeutics | 2015
Kevin J. Hamblett; Carl J. Kozlosky; Sophia Siu; Wesley S. Chang; Hua Liu; Ian Foltz; Esther Trueblood; David Park Meininger; Taruna Arora; Brian Twomey; Steven Vonderfecht; Qing Chen; John S. Hill; William C. Fanslow
Epidermal growth factor receptor variant III (EGFRvIII) is a cancer-specific deletion mutant observed in approximately 25% to 50% of glioblastoma multiforme (GBM) patients. An antibody drug conjugate, AMG 595, composed of the maytansinoid DM1 attached to a highly selective anti-EGFRvIII antibody via a noncleavable linker, was developed to treat EGFRvIII-positive GBM patients. AMG 595 binds to the cell surface and internalizes into the endo-lysosomal pathway of EGFRvIII-expressing cells. Incubation of AMG 595 with U251 cells expressing EGFRvIII led to potent growth inhibition. AMG 595 treatment induced significant tumor mitotic arrest, as measured by phospho-histone H3, in GBM subcutaneous xenografts expressing EGFRvIII. A single intravenous injection of AMG 595 at 17 mg/kg (250 μg DM1/kg) generated complete tumor regression in the U251vIII subcutaneous xenograft model. AMG 595 mediated tumor regression in the D317 subcutaneous xenograft model that endogenously expresses EGFRvIII. Finally, AMG 595 treatment inhibited the growth of D317 xenografts orthotopically implanted into the brain as determined by magnetic resonance imaging. These results demonstrate that AMG 595 is a promising candidate to evaluate in EGFRvIII-expressing GBM patients. Mol Cancer Ther; 14(7); 1614–24. ©2015 AACR.
Toxicologic Pathology | 2015
Mark R. Fielden; Jonathan A. Werner; Jeff A. Jamison; Aldo Coppi; Dean Hickman; Robert T. Dunn; Esther Trueblood; Lei Zhou; Cynthia A. Afshari; Ruth Lightfoot-Dunn
β-Secretase 1 (BACE1) represents an attractive target for the treatment of Alzheimer’s disease. In the course of development of a novel small molecule BACE1 inhibitor (AMG-8718), retinal thinning was observed in a 1-month toxicity study in the rat. To further understand the lesion, an investigational study was conducted whereby rats were treated daily with AMG-8718 for 1 month followed by a 2-month treatment-free phase. The earliest detectable change in the retina was an increase in autofluorescent granules in the retinal pigment epithelium (RPE) on day 5; however, there were no treatment-related light microscopic changes observed in the neuroretina and no changes observed by fundus autofluorescence or routine ophthalmoscopic examination after 28 days of dosing. Following 2 months of recovery, there was significant retinal thinning attributed to loss of photoreceptor nuclei from the outer nuclear layer. Electroretinographic changes were observed as early as day 14, before any microscopic evidence of photoreceptor loss. BACE1 knockout rats were generated and found to have normal retinal morphology indicating that the retinal toxicity induced by AMG-8718 was likely off-target. These results suggest that AMG-8718 impairs phagolysosomal function in the rat RPE, which leads to photoreceptor dysfunction and ultimately loss of photoreceptors.
Cytometry Part A | 2009
Stephen J. Zoog; Andrea Itano; Esther Trueblood; Efrain Pacheco; Lei Zhou; Xuxia Zhang; John Ferbas; Gordon Ng; Gloria Juan
Mast cells (MCs) have important functional roles in leukocyte recruitment, pain, and wound healing, and increased tissue resident MC function has been associated with several fibrotic diseases. Consequently, the study of MCs in situ can be a direct approach to studying the pharmacodynamic impact of MC‐directed therapeutics in tissues. Here we describe an automated laser scanning cytometry assay that was used to characterize the kinetics of MC accumulation in healing skin wounds and to study the effect of inhibiting CD117 (cKit) signaling. The number of tryptase‐positive MCs approximately doubled 14 days after cutaneous injury in nonhuman primates. Treatment of animals with anti‐CD117 or imatinib mesylate (Gleevec®) reduced MC accumulation at the edge of healing wounds in mice and nonhuman primates, respectively. In translating this MC assay to become a biomarker for human studies, no differences in dermal MC numbers were evident between genders, ages or body mass index from 20 healthy donors. These data suggest that skin is a practical and useful tissue for tracking pharmacodynamic effects of MC‐directed therapies.
Cytokine | 2013
Yu Sun; Afsaneh Mozaffarian; Heather A. Arnett; Huyen Dinh; Esther Trueblood; Jennifer E. Towne
Archive | 2015
Mitra Farnoodian; James B. Kinter; Saeed Yadranji Aghdam; Ismail Zaitoun; M Christine; Su Khoh-Reiter; Sharon A. Sokolowski; Bart Jessen; Mark Evans; Deepak Dalvie; Shuyan Lu; Esther Trueblood; Lei Zhou; Cynthia A. Afshari; Ruth Lightfoot-Dunn; Mark R. Fielden; Jonathan A. Werner; Jeff A. Jamison; Aldo Coppi; Dean Hickman; Robert Dunn
Journal of Immunology | 2009
Afsaneh Mozaffarian; Penny Anders; Esther Trueblood; Irina G. Luzina; Nevins W. Todd; Sergei P. Atamas; Heather A. Arnett