Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Esther Vázquez is active.

Publication


Featured researches published by Esther Vázquez.


Microbial Cell Factories | 2009

Microbial factories for recombinant pharmaceuticals

Neus Ferrer-Miralles; Joan Domingo-Espín; José Luis Corchero; Esther Vázquez; Antonio Villaverde

Most of the hosts used to produce the 151 recombinant pharmaceuticals so far approved for human use by the Food and Drug Administration (FDA) and/or by the European Medicines Agency (EMEA) are microbial cells, either bacteria or yeast. This fact indicates that despite the diverse bottlenecks and obstacles that microbial systems pose to the efficient production of functional mammalian proteins, namely lack or unconventional post-translational modifications, proteolytic instability, poor solubility and activation of cell stress responses, among others, they represent convenient and powerful tools for recombinant protein production. The entering into the market of a progressively increasing number of protein drugs produced in non-microbial systems has not impaired the development of products obtained in microbial cells, proving the robustness of the microbial set of cellular systems (so far Escherichia coli and Saccharomyces cerevisae) developed for protein drug production. We summarize here the nature, properties and applications of all those pharmaceuticals and the relevant features of the current and potential producing hosts, in a comparative way.


Journal of Clinical Investigation | 2004

Gain-of-function mutation in the KCNMB1 potassium channel subunit is associated with low prevalence of diastolic hypertension

José M. Fernández-Fernández; Marta Tomás; Esther Vázquez; Patricio Orio; Ramon Latorre; Mariano Sentí; Jaume Marrugat; Miguel A. Valverde

Hypertension is the most prevalent risk factor for cardiovascular diseases, present in almost 30% of adults. A key element in the control of vascular tone is the large-conductance, Ca(2+)-dependent K(+) (BK) channel. The BK channel in vascular smooth muscle is formed by an ion-conducting alpha subunit and a regulatory beta(1) subunit, which couples local increases in intracellular Ca(2+) to augmented channel activity and vascular relaxation. Our large population-based genetic epidemiological study has identified a new single-nucleotide substitution (G352A) in the beta(1) gene (KCNMB1), corresponding to an E65K mutation in the protein. This mutation results in a gain of function of the channel and is associated with low prevalence of moderate and severe diastolic hypertension. BK-beta(1E65K) channels showed increased Ca(2+) sensitivity, compared with wild-type channels, without changes in channel kinetics. In conclusion, the BK-beta(1E65K) channel might offer a more efficient negative-feedback effect on vascular smooth muscle contractility, consistent with a protective effect of the K allele against the severity of diastolic hypertension.


Trends in Biotechnology | 2012

Bacterial inclusion bodies: making gold from waste

Elena García-Fruitós; Esther Vázquez; César Díez-Gil; José Luis Corchero; Joaquin Seras-Franzoso; Imma Ratera; Jaume Veciana; Antonio Villaverde

Many protein species produced in recombinant bacteria aggregate as insoluble protein clusters named inclusion bodies (IBs). IBs are discarded from further processing or are eventually used as a pure protein source for in vitro refolding. Although usually considered as waste byproducts of protein production, recent insights into the physiology of recombinant bacteria and the molecular architecture of IBs have revealed that these protein particles are unexpected functional materials. In this Opinion article, we present the relevant mechanical properties of IBs and discuss the ways in which they can be explored as biocompatible nanostructured materials, mainly, but not exclusively, in biocatalysis and tissue engineering.


Circulation Research | 2005

Protective effect of the KCNMB1 E65K genetic polymorphism against diastolic hypertension in aging women and its relevance to cardiovascular risk.

Mariano Sentí; José M. Fernández-Fernández; Marta Tomás; Esther Vázquez; Roberto Elosua; Jaume Marrugat; Miguel A. Valverde

The E65K polymorphism in the &bgr;1-subunit of the large-conductance, Ca2+-dependent K+ (BK) channel, a key element in the control of arterial tone, has recently been associated with low prevalence of diastolic hypertension. We now report the modulatory effect of sex and age on the association of the E65K polymorphism with low prevalence of diastolic hypertension and the protective role of E65K polymorphism against cardiovascular disease. We analyzed the genotype frequency of the E65K polymorphism in 3924 participants selected randomly in two cross-sectional studies. A five-year follow-up of the cohort was performed to determine whether cardiovascular events had occurred since inclusion. Estrogen modulation of wild-type and mutant ion channel activity was assessed after heterologous expression and electrophysiological studies. Multivariate regression analyses showed that increasing age upmodulates the protective effect of the K allele against moderate-to-severe diastolic hypertension in the overall group of participants (odds ratio [OR], 0.35; P=0.006). The results remained significant when analyses were restricted to women (OR, 0.18; P=0.02) but not men (OR, 0.46; P=0.09). This effect was independent of the reported acute modulation of BK channels by estrogen. A five-year follow-up study also demonstrated a reduced age- and sex-adjusted hazard ratio of 0.11, 95% CI, 0.01 to 0.79 of K-carriers for “combined cardiovascular disease” (myocardial infarction and stroke) compared with EE homozygotes. Our study provides the first genetic evidence for the different impact of the BK channel in the control of human blood pressure in men and women, with particular relevance in aging women, and highlights the E65K polymorphism as one of the strongest genetic factors associated thus far to protection against myocardial infarction and stroke.


Microbial Cell Factories | 2016

Recombinant pharmaceuticals from microbial cells: a 2015 update

Laura Sánchez-García; Lucas Martín; Ramon Mangues; Neus Ferrer-Miralles; Esther Vázquez; Antonio Villaverde

Diabetes, growth or clotting disorders are among the spectrum of human diseases related to protein absence or malfunction. Since these pathologies cannot be yet regularly treated by gene therapy, the administration of functional proteins produced ex vivo is required. As both protein extraction from natural producers and chemical synthesis undergo inherent constraints that limit regular large-scale production, recombinant DNA technologies have rapidly become a choice for therapeutic protein production. The spectrum of organisms exploited as recombinant cell factories has expanded from the early predominating Escherichia coli to alternative bacteria, yeasts, insect cells and especially mammalian cells, which benefit from metabolic and protein processing pathways similar to those in human cells. Up to date, around 650 protein drugs have been worldwide approved, among which about 400 are obtained by recombinant technologies. Other 1300 recombinant pharmaceuticals are under development, with a clear tendency towards engineered versions with improved performance and new functionalities regarding the conventional, plain protein species. This trend is exemplified by the examination of the contemporary protein-based drugs developed for cancer treatment.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Defective regulatory volume decrease in human cystic fibrosis tracheal cells because of altered regulation of intermediate conductance Ca2+-dependent potassium channels

Esther Vázquez; Muriel Nobles; Miguel A. Valverde

The cystic fibrosis transmembrane conductance regulator (CFTR) protein has the ability to function as both a chloride channel and a channel regulator. The loss of these functions explains many of the manifestations of the cystic fibrosis disease (CF), including lung and pancreatic failure, meconium ileus, and male infertility. CFTR has previously been implicated in the cell regulatory volume decrease (RVD) response after hypotonic shocks in murine small intestine crypts, an effect associated to the dysfunction of an unknown swelling-activated potassium conductance. In the present study, we investigated the RVD response in human tracheal CF epithelium and the nature of the volume-sensitive potassium channel affected. Neither the human tracheal cell line CFT1, expressing the mutant CFTR-ΔF508 gene, nor the isogenic vector control line CFT1-LC3, engineered to express the βgal gene, showed RVD. On the other hand, the cell line CFT1-LCFSN, engineered to express the wild-type CFTR gene, presented a full RVD. Patch-clamp studies of swelling-activated potassium currents in the three cell lines revealed that all of them possess a potassium current with the biophysical and pharmacological fingerprints of the intermediate conductance Ca2+-dependent potassium channel (IK, also known as KCNN4). However, only CFT1-LCFSN cells showed an increase in IK currents in response to hypotonic challenges. Although the identification of the molecular mechanism relating CFTR to the hIK channel remains to be solved, these data offer new evidence on the complex integration of CFTR in the cells where it is expressed.


Nanotechnology | 2010

Tunable geometry of bacterial inclusion bodies as substrate materials for tissue engineering

Elena García-Fruitós; Joaquin Seras-Franzoso; Esther Vázquez; Antonio Villaverde

A spectrum of materials for biomedical applications is produced in bacteria, and some of them, such as metals or polyhydroxyalkanoates, are straightforwardly obtained as particulate entities. We have explored the biofabrication process of bacterial inclusion bodies, particulate proteinaceous materials (ranging from 50 to 500 nm in diameter) recently recognized as suitable for surface topographical modification and tissue engineering. Inclusion bodies have been widely described as spherical or pseudo-spherical particles with only minor morphological variability, mostly restricted to their size. Here we have identified a cellular gene in Escherichia coli (clpP) that controls the in vivo fabrication process of inclusion bodies. In the absence of the encoded protease, the dynamics of protein deposition is perturbed, resulting in unusual tear-shaped particles with enhanced surface-volume ratios. This fact modifies the ability of inclusion bodies to promote mammalian cell attachment and differentiation upon surface decoration. The implications of the genetic control of inclusion body geometry are discussed in the context of their biological fabrication and regarding the biomedical potential of these protein clusters in regenerative medicine.


Biomaterials | 2010

The nanoscale properties of bacterial inclusion bodies and their effect on mammalian cell proliferation.

César Díez-Gil; Sven Krabbenborg; Elena García-Fruitós; Esther Vázquez; Escarlata Rodríguez-Carmona; Imma Ratera; Nora Ventosa; Joaquin Seras-Franzoso; Olivia Cano-Garrido; Neus Ferrer-Miralles; Antonio Villaverde; Jaume Veciana

The chemical and mechanical properties of bacterial inclusion bodies, produced in different Escherichia coli genetic backgrounds, have been characterized at the nanoscale level. In regard to wild type, DnaK(-) and ClpA(-) strains produce inclusion bodies with distinguishable wettability, stiffness and stiffness distribution within the proteinaceous particle. Furthermore it was possible to observe how cultured mammalian cells respond differentially to inclusion body variants when used as particulate materials to engineer the nanoscale topography, proving that the actual range of referred mechanical properties is sensed and discriminated by biological systems. The data provide evidence of the mechanistic activity of the cellular quality control network and the regulation of the stereospecific packaging of partially folded protein species in bacteria. This inclusion body nanoscale profiling offers possibilities for their fine genetic tuning and the resulting macroscopic effects when applied in biological interfaces.


Nanomedicine: Nanotechnology, Biology and Medicine | 2010

Protein nanodisk assembling and intracellular trafficking powered by an arginine-rich (R9) peptide

Esther Vázquez; Mónica Roldán; César Díez-Gil; Ugutz Unzueta; Joan Domingo-Espín; Juan Cedano; Oscar Conchillo; Imma Ratera; Jaume Veciana; Xavier Daura; Neus Ferrer-Miralles; Antonio Villaverde

AIMS Arginine(R)-rich cationic peptides are powerful tools in drug delivery since, alone or when associated with polyplexes, proteins or chemicals, they confer DNA condensation, membrane translocation and blood-brain barrier crossing abilities. The unusual stability and high in vivo performance of their associated drugs suggest a particulate organization or R(n) complexes, which this study aimed to explore. MATERIALS & METHODS We have analyzed the particulate organization and biological performance in DNA delivery of a model, R9-containing green fluorescent protein by dynamic light scattering, transmission electron microscopy, atomic force microscopy, single cell confocal microscopy and flow cytometry. RESULTS A deep nanoscale examination of R9-powered constructs reveals a novel and promising feature of R9, that when fused to a scaffold green fluorescent protein, promote its efficient self-assembling as highly stable, regular disk-shaped nanoparticles of 20 x 3 nm. These constructs are efficiently internalized in mammalian cells and rapidly migrate through the cytoplasm towards the nucleus in a fully bioactive form. Besides, such particulate platforms accommodate, condense and deliver plasmid DNA to the nucleus and promote plasmid-driven transgene expression. CONCLUSION The architectonic properties of arginine-rich peptides at the nanoscale reveal a new category of protein nanoparticles, namely nanodisks, and provide novel strategic concepts and architectonic tools for the tailored construction of new-generation artificial viruses for gene therapy and drug delivery.


Advanced Materials | 2012

Functional Inclusion Bodies Produced in Bacteria as Naturally Occurring Nanopills for Advanced Cell Therapies

Esther Vázquez; José Luis Corchero; Joan F. Burgueño; Joaquin Seras-Franzoso; Ana Kosoy; Ramon Bosser; Rosa Mendoza; Joan Marc Martínez-Láinez; Ursula Rinas; Ester Fernández; Luis Ruiz-Avila; Elena García-Fruitós; Antonio Villaverde

Inclusion bodies (50-500 nm in diameter) produced in recombinant bacteria can be engineered to contain functional proteins with therapeutic potential. Upon exposure, these protein particles are efficiently internalized by mammalian cells and promote recovery from diverse stresses. Being fully biocompatible, inclusion bodies are a novel platform, as tailored nanopills, for sustained drug release in advanced cell therapies.

Collaboration


Dive into the Esther Vázquez's collaboration.

Top Co-Authors

Avatar

Neus Ferrer-Miralles

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Elena García-Fruitós

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

José Luis Corchero

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Alejandro Sánchez-Chardi

Autonomous University of Barcelona

View shared research outputs
Researchain Logo
Decentralizing Knowledge