Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Estíbaliz Castillero is active.

Publication


Featured researches published by Estíbaliz Castillero.


American Journal of Physiology-endocrinology and Metabolism | 2011

Fenofibrate, a PPARα agonist, decreases atrogenes and myostatin expression and improves arthritis-induced skeletal muscle atrophy

Estíbaliz Castillero; María Paz Nieto-Bona; Carmen Fernández-Galaz; Ana Isabel Martín; María López-Menduiña; Miriam Granado; María Ángeles Villanúa; Asunción López-Calderón

Arthritis is a chronic inflammatory illness that induces cachexia, which has a direct impact on morbidity and mortality. Fenofibrate, a selective PPARα activator prescribed to treat human dyslipidemia, has been reported to decrease inflammation in rheumatoid arthritis patients. The aim of this study was to elucidate whether fenofibrate is able to ameliorate skeletal muscle wasting in adjuvant-induced arthritis, an experimental model of rheumatoid arthritis. On day 4 after adjuvant injection, control and arthritic rats were treated with 300 mg/kg fenofibrate until day 15, when all rats were euthanized. Fenofibrate decreased external signs of arthritis and liver TNFα and blocked arthritis-induced decreased in PPARα expression in the gastrocnemius muscle. Arthritis decreased gastrocnemius weight, which results from a decrease in cross-section area and myofiber size, whereas fenofibrate administration to arthritic rats attenuated the decrease in both gastrocnemius weight and fast myofiber size. Fenofibrate treatment prevented arthritis-induced increase in atrogin-1 and MuRF1 expression in the gastrocnemius. Neither arthritis nor fenofibrate administration modify Akt-FoxO3 signaling. Myostatin expression was not modified by arthritis, but fenofibrate decreased myostatin expression in the gastrocnemius of arthritic rats. Arthritis increased muscle expression of MyoD, PCNA, and myogenin in the rats treated with vehicle but not in those treated with fenofibrate. The results indicate that, in experimental arthritis, fenofibrate decreases skeletal muscle atrophy through inhibition of the ubiquitin-proteasome system and myostatin.


Journal of Endocrinology | 2008

Adipose tissue loss in adjuvant arthritis is associated with a decrease in lipogenesis, but not with an increase in lipolysis

Ana Isabel Martín; Estíbaliz Castillero; Miriam Granado; María López-Menduiña; María Ángeles Villanúa; Asunción López-Calderón

Adjuvant-induced arthritis is a model of rheumatoid arthritis that induces cachexia. In other cachectic situations, there is an increase in lipolysis resulting in a loss of adipose tissue mass. The aim of this work was to analyse the effect of chronic arthritis, induced by adjuvant injection, on white adipose tissue (WAT). For this purpose, rats were killed 10 days after adjuvant injection, when the first external symptoms appeared, on days 15 and 22 when the external signs of the illness reach their severest level. As arthritis decreases food intake, a pair-fed group was also included. Serum concentrations of insulin, leptin, adiponectin, glycerol and nitrites, as well as gene expression of leptin, adiponectin, hormone-sensitive lipase (HSL), fatty acid synthase (FAS), tumour necrosis factor alpha and zinc-alpha(2)-glycoprotein (ZAG) were determined. Arthritis decreased food intake between days 5 and 16, but not during the last 5 days of the experiment. There was a marked decrease in relative adipose tissue weight and in serum leptin and adiponectin as well as in their gene expression in WAT in arthritic rats. Arthritis decreased the gene expression of FAS in the WAT. However, none of these effects was found in pair-fed rats. Arthritis did not increase lipolysis, since arthritic rats have lower serum concentrations of glycerol, HSL mRNA in WAT, as well as liver ZAG mRNA than the pair-fed or control rats. These data suggest that in chronic arthritis the decrease in white adipose mass is secondary to a reduced adipose lipogenesis, and this effect is not mainly due to the decrease in food intake.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2009

Eicosapentaenoic acid attenuates arthritis-induced muscle wasting acting on atrogin-1 and on myogenic regulatory factors

Estíbaliz Castillero; Ana Isabel Martín; María López-Menduiña; María Ángeles Villanúa; Asunción López-Calderón

Eicosapentaenoic acid (EPA) is an omega-3 polyunsaturated fatty acid that has anti-inflammatory and anticachectic actions. The aim of this work was to elucidate whether EPA administration is able to prevent an arthritis-induced decrease in body weight and muscle wasting in rats. Arthritis was induced by intradermal injection of Freunds adjuvant; 3 days later, nine rats received 1 g/kg EPA or coconut oil daily. All rats were killed 15 days after adjuvant injection. EPA administration decreased the external signs of arthritis and paw volume as well as liver TNF-alpha mRNA. EPA did not modify arthritis-induced decrease in food intake or body weight gain. However, EPA treatment prevented arthritis-induced increase in muscle TNF-alpha and atrogin-1, whereas it attenuated the decrease in gastrocnemius weight and the increase in MuRF1 mRNA. Arthritis not only decreased myogenic regulatory factors but also increased PCNA, MyoD, and myogenin mRNA in the gastrocnemius. Western blot analysis showed that changes in protein content followed the pattern seen with mRNA. In the control rats, EPA administration increased PCNA and MyoD mRNA and protein. In arthritic rats, EPA did not modify the stimulatory effect of arthritis on these myogenic regulatory factors. The results suggest that in experimental arthritis, in addition to its anti-inflammatory effect, EPA treatment attenuates muscle wasting by decreasing atrogin-1 and MuRF1 gene expression and increasing the transcription factors that regulate myogenesis.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2010

Systemic IGF-I administration attenuates the inhibitory effect of chronic arthritis on gastrocnemius mass and decreases atrogin-1 and IGFBP-3

María López-Menduiña; Ana Isabel Martín; Estíbaliz Castillero; María Ángeles Villanúa; Asunción López-Calderón

Adjuvant arthritis is an animal model of rheumatoid arthritis that decreases liver and circulating IGF-I as well as skeletal muscle mass. The aim of this work was to elucidate whether IGF-I administration was able to prevent the effect of arthritis on body weight and on two skeletal muscles, gastrocnemius and soleus. On day 4 after adjuvant injection, control and arthritic rats were treated with IGF-I (100 microg/kg s.c.) two times a day, until day 15 when all rats were killed. Arthritis decreased body weight gain and gastrocnemius weight. In arthritic rats, IGF-I treatment increased body weight gain and gastrocnemius weight, without modifying food intake or the external signs of arthritis. Arthritis increased atrogin-1 and muscle ring finger 1 (MuRF1) gene expression in the gastrocnemius and to a lesser extent in the soleus muscle. IGF-I attenuated the arthritis-induced increase in atrogin-1 and MuRF1 expression in the gastrocnemius, whereas it did not modify the expression of these genes in the soleus muscle. Arthritis also increased IGF-binding protein (IGBP)-3 and IGFBP-5 gene expression in gastrocnemius and soleus, whereas IGF-I administration decreased IGFBP-3, but not IGFBP-5, gene expression in both muscles. In both groups of arthritic rats and in control rats treated with IGF-I, proliferating cell nuclear antigen and myogenic differentiation proteins were increased in the gastrocnemius. These data suggest that the inhibitory effect of chronic arthritis on skeletal muscle is higher in fast glycolytic than in slow oxidative muscle and that IGF-I administration attenuates this effect and decreases atrogin-1 and IGFBP-3 gene expression.


Molecular and Cellular Endocrinology | 2009

IGF-I system, atrogenes and myogenic regulatory factors in arthritis induced muscle wasting

Estíbaliz Castillero; Ana Isabel Martín; María López-Menduiña; Miriam Granado; Mª Ángeles Villanúa; Asunción López-Calderón

The aim of this work was to analyse the evolution of the ubiquitin-proteasome, the myogenic regulatory factors, and the IGF-I system during the development of experimental arthritis. Arthritis was induced by adjuvant injection and rats were killed 10, 15 and 22 days later. Gastrocnemius was progressively atrophied in arthritic rats. Arthritis induced a rapid increase in muscular IGFBP-3 and IGFBP-5 and, to a lesser extent, in IGF-I mRNA. An increased expression of the muscle-specific ubiquitin ligases atrogin-1/MAFbx and MuRF-1 was observed in the gastrocnemius from day 10, reaching its maximum value on day 15. Concomitantly, the proliferation marker PCNA and the early myogenic regulatory factor MyoD were also maximally increased on day 15. Myogenin, a late-acting myogenic regulatory factor, was maximally increased on days 15 and 22. These results suggest that muscle wasting in arthritis is secondary to an increase in muscle proteolysis, rather to a decrease in muscle regeneration.


Molecular and Cellular Endocrinology | 2009

Ghrelin treatment protects lactotrophs from apoptosis in the pituitary of diabetic rats.

Miriam Granado; Julie A. Chowen; Cristina García-Cáceres; A. Delgado-Rubín; Vicente Barrios; Estíbaliz Castillero; Jesús Argente; Laura M. Frago

Poorly controlled diabetes is associated with hormonal imbalances, including decreased prolactin production partially due to increased lactotroph apoptosis. In addition to its metabolic actions, ghrelin inhibits apoptosis in several cell types. Thus, we analyzed ghrelins effects on diabetes-induced pituitary cell death and hormonal changes. Six weeks after onset of diabetes in male Wistar rats (streptozotocin 70 mg/kg), minipumps infusing saline or 24 nmol ghrelin/day were implanted (jugular). Rats were killed two weeks later. Ghrelin did not modify body weight or serum glucose, leptin or adiponectin, but increased total ghrelin (P<0.05), IGF-I (P<0.01) and prolactin (P<0.01) levels. Ghrelin decreased cell death, iNOS and active caspase-8 (P<0.05) and increased prolactin (P<0.05), Bcl-2 (P<0.01) and Hsp70 (P<0.05) content in the pituitary. In conclusion, ghrelin prevents diabetes-induced death of lactotrophs, decreasing caspase-8 activation and iNOS content and increasing anti-apoptotic pathways such as pituitary Bcl-2 and Hsp70 and serum IGF-I concentrations.


European Journal of Pharmacology | 2009

Cyclooxygenase-2 inhibition reverts the decrease in adiponectin levels and attenuates the loss of white adipose tissue during chronic inflammation

Miriam Granado; Ana Isabel Martín; Estíbaliz Castillero; Asunción López-Calderón; Mª Ángeles Villanúa

Chronic arthritis leads to a decrease in body weight that is associated with a decrease in skeletal muscle and white adipose tissue mass. We have observed that overactivation of cyclooxygenase-2 (COX-2) is responsible for muscle wasting in arthritic rats. The aim of this work was to study the role of COX-2 in arthritis-induced white adipose tissue mass loss. Arthritis was induced in rats by Freunds adjuvant injection, and the effect of the COX-2 inhibitor meloxicam on serum concentrations of leptin, adiponectin, insulin and glycerol, as well as on gene expression of leptin, adiponectin, hormone-sensitive lipase (HSL), fatty acid synthase (FAS), tumour necrosis factor alpha (TNF) and insulin-like growth factor I (IGF-I) in white adipose tissue were determined. Arthritis decreased adipose tissue weight, serum leptin and adiponectin as well as their mRNAs in adipose tissue. Meloxicam administration to arthritic rats increased adipose tissue weight, serum concentrations of adiponectin and its mRNA in adipose tissue, but it did not modify leptin. Arthritis decreased serum insulin and FAS and IGF-I gene expression in adipose tissue. Meloxicam administration did not modify these effects. Serum concentrations of glycerol were decreased in arthritic rats. In control rats, meloxicam administration did not modify serum glycerol or adipose tissue gene expression of HSL. However, in arthritic rats HSL gene expression in adipose tissue was decreased by meloxicam. All these data indicate that COX-2 activation plays a role in the decrease in adiponectin secreted by adipocytes and in the loss in white adipose tissue mass in arthritic rats.


Journal of Endocrinology | 2011

Comparison of the effects of the n-3 polyunsaturated fatty acid eicosapentaenoic and fenofibrate on the inhibitory effect of arthritis on IGF1.

Estíbaliz Castillero; María López-Menduiña; Ana Isabel Martín; María Ángeles Villanúa; Asunción López-Calderón

Adjuvant-induced arthritis is a chronic inflammatory illness that induces muscle wasting and decreases circulating IGF1. Eicosapentaenoic acid (EPA) and fenofibrate, a peroxisome proliferator-activated receptors α agonist, have anti-inflammatory actions and ameliorate muscle wasting in arthritic rats. The aim of this work was to elucidate whether EPA and fenofibrate administration are able to prevent the effect of arthritis on the IGF1-IGFBP system. On day 4 after adjuvant injection control, arthritic rats were gavaged with EPA (1 g/kg) or fenofibrate (300 mg/kg) until day 15 when all rats were killed. Arthritis decreased body weight gain, serum IGF1, and liver Igf1 mRNA, whereas it increased gastrocnemius Igfbp3 mRNA. EPA, but not fenofibrate, administration prevented arthritis-induced decrease in serum IGF1 and liver Igf1 mRNA. In the rats treated with EPA arthritis increased Igfbp5 mRNA in the gastrocnemius. Fenofibrate treatment decreased IGF1 and Igf1 mRNA in the liver and gastrocnemius. In arthritic rats, fenofibrate increased body weight gain and decreased gastrocnemius Igfbp3 and Igfbp5 mRNA. These data suggest that the mechanisms through which EPA and fenofibrate act on the IGF1 system and ameliorate muscle wasting in arthritic rats are different. EPA administration increased circulating levels of IGF1, whereas fenofibrate decreased the Igfbp3 and Igfbp5 in the gastrocnemius muscle.


Growth Hormone & Igf Research | 2012

Short-term growth hormone or IGF-I administration improves the IGF-IGFBP system in arthritic rats

María López-Menduiña; Ana Isabel Martín; Estíbaliz Castillero; María Ángeles Villanúa; Asunción López-Calderón

OBJECTIVE Adjuvant-induced arthritis is an experimental model of rheumatoid arthritis that inhibits the GH-IGF-I axis and decreases body weight gain and muscle mass. Although chronic GH or IGF-I treatment increases body weight gain in arthritic rats, muscle resistance to GH and IGF-I is a very common complication in inflammatory diseases. In this study we examine the effect of short-term administration of rhGH and rhIGF-I on liver and muscle IGF-I, IGFBP-3 and -5 as well as on the ubiquitin-ligases MuRF1 and atrogin-1 in the muscle of arthritic rats. DESIGN Arthritis was induced in adult male Wistar rats by an intradermal injection of 4 mg of Freunds adjuvant. Fifteen days after adjuvant injection, 300 μg/kg of rhGH or 200 μg/kg of rhIGF or saline was administrated 18 and 3h before decapitation. A pair-fed group injected with saline was included in order to discard a possible effect of decreased food intake. Gene expression of IGF-I, GHR, IGFBP-3, IGFBP-5, atrogin-1 and MuRF1 were quantified using RT-PCR. In serum, IGF-I was measured by radioimmunoassay (RIA) and IGFBP-3 by ligand blot. RESULTS Arthritis decreased serum IGF-I and IGF mRNA in liver (P<0.05), but not in skeletal muscle. In arthritic rats, rhGH increased serum IGF-I and liver IGF-I mRNA similar to the levels of pair-fed rats. Arthritis increased atrogin-1, MuRF1, IGFBP-3 and IGFBP-5 mRNA in muscle (P<0.01). IGFBP-3 mRNA was downregulated by rhIGF-I, but not by rhGH, administration in control and arthritic rats (P<0.05). Administration of rhGH and rhIGF-I increased IGFBP-5 in the gastrocnemius of arthritic rats. CONCLUSIONS Short-term rhGH and rhIGF-I administration was found to increase muscle IGFBP-5 mRNA, whereas only rhIGF-I administration decreased muscle IGFBP-3 mRNA in control and arthritic rats. These data suggest that arthritis does not induce GH or IGF-I resistance in skeletal muscle.


Journal of Endocrinology | 2008

Ptgs2 activation by endotoxin mediates the decrease in Igf1, but not in Igfbp3, gene expression in the liver

Ana Isabel Martín; María López-Menduiña; Estíbaliz Castillero; Miriam Granado; María Ángeles Villanúa; Asunción López-Calderón

The aim of this work was to analyse the role of cyclooxygenase-2 (Ptgs2) in endotoxin-induced decrease in Igf1 and Igf binding protein-3 (Igfbp3). For this purpose, male Wistar rats were injected with lipolysaccharide (LPS) and/or the Ptgs2 inhibitor meloxicam. LPS induced a significant decrease (P<0.01) in serum concentrations of Igf1 and Igfbp3 and their mRNAs in the liver. Meloxicam administration prevented the inhibitory effect of LPS injection on serum Igf1 and its liver mRNA. By contrast, meloxicam administration was unable to modify the inhibitory effect of LPS on Igfbp3. LPS injection also induced a decrease in GH receptor (Ghr) mRNA in the liver, and meloxicam attenuated this effect. In order to elucidate a direct action of the Ptgs2 inhibitor on the liver cells, the effect of LPS and/or meloxicam was studied in primary cultures of hepatocytes with non-parenchymal cells. LPS decreased Igf1 and Ghr but not Igfbp3 gene expression in liver cells in culture. Meloxicam administration attenuated the inhibitory effect of LPS on Igf1 mRNA, whereas it did not modify the decrease in Ghr mRNA after LPS. The effect of meloxicam on the LPS response does not seem to be mediated by changes in nitric oxide or tumour necrosis factor (Tnf) production, since meloxicam did not modify the stimulatory effect of LPS on nitric oxide or Tnfalpha gene expression both in vivo and in vitro. All these data suggest that LPS-induced Ptgs2 activation decreases Igf1 gene expression in liver cells.

Collaboration


Dive into the Estíbaliz Castillero's collaboration.

Top Co-Authors

Avatar

Ana Isabel Martín

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Asunción López-Calderón

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

María Ángeles Villanúa

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

María López-Menduiña

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Miriam Granado

Autonomous University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Carmen Fernández-Galaz

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

María Paz Nieto-Bona

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Mª Ángeles Villanúa

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Teresa Priego

University of the Balearic Islands

View shared research outputs
Top Co-Authors

Avatar

A. Delgado-Rubín

Instituto de Salud Carlos III

View shared research outputs
Researchain Logo
Decentralizing Knowledge