Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eszter Boros is active.

Publication


Featured researches published by Eszter Boros.


Journal of the American Chemical Society | 2010

Acyclic Chelate with Ideal Properties for 68Ga PET Imaging Agent Elaboration

Eszter Boros; Cara L. Ferreira; Jacqueline F. Cawthray; Eric W. Price; Brian O. Patrick; Dennis W. Wester; Michael J. Adam; Chris Orvig

We have investigated novel bifunctional chelate alternatives to the aminocarboxylate macrocycles NOTA (N(3)O(3)) or DOTA (N(4)O(4)) for application of radioisotopes of Ga to diagnostic nuclear medicine and have found that the linear N(4)O(2) chelate H(2)dedpa coordinates (67)Ga quantitatively to form [(67)Ga(dedpa)](+) after 10 min at RT. Concentration-dependent coordination to H(2)dedpa of either (68)Ga or (67)Ga showed quantitative conversion to the desired products with ligand concentrations as low as 10(-7) M. With (68)Ga, specific activities as high as 9.8 mCi nmol(-1) were obtained without purification. In a 2 h competition experiment against human apo-transferrin, [(67)Ga(dedpa)](+) showed no decomposition. Two bifunctional versions of H(2)dedpa are also described, and these both coordinate to (67)Ga at RT within 10 min. Complete syntheses, characterizations, labeling studies, and biodistribution profiles of the (67)Ga complexes are presented for the new platform chelates. The stability of these platform chelates is higher than that of DOTA.


Nuclear Medicine and Biology | 2012

RGD conjugates of the H2dedpa scaffold: synthesis, labeling and imaging with 68Ga

Eszter Boros; Cara L. Ferreira; Donald Yapp; Rajanvir K. Gill; Eric W. Price; Michael J. Adam; Chris Orvig

INTRODUCTION The rekindled interest in the (68)Ga generator as an attractive positron emission tomography generator system has led us and others to investigate novel chelate systems for (68)Ga. We have previously reported our findings with the acyclic, rapidly coordinating chelate H(2)dedpa and its model derivatives. METHODS In this report, we describe the synthesis of the corresponding bifunctional chelate scaffolds (H(2)dp-bb-NCS and H(2)dp-N-NCS) as well as the radiolabeling properties, transferrin stability, binding to the target using in vitro cell models and in vivo behavior the corresponding conjugates with the α(v)β(3) targeting cyclic pentapeptide cRGDyK (monomeric H(2)RGD-1 and dimeric H(2)RGD-2). RESULTS The ability of the conjugated ligands to coordinate Ga isotopes within 10 min at room temperature at concentrations of 1 nmol was confirmed. Complex [(67)Ga(RGD-1)](+) was more stable (92% after 2 h) than [(67)Ga(RGD-2)](+) (73% after 2 h) in a transferrin challenge experiment. IC(50) values for both conjugates (H(2)RGD-1 and H(2)RGD-2) and nonconjugated RGD were determined in a cell-based competitive binding assay with (125)I-echistatin using U87MG cells, where enhanced specific binding was observed for the multivalent H(2)RGD-2 conjugate compared to the monovalent H(2)RGD-1 and nonconjugated cRGDyK. The U87MG cell line was also used to generate subcutaneous xenograft tumors on RAG2M mice, which were used to evaluate the in vivo properties of [(68)Ga(RGD-1)](+) and [(68)Ga(RGD-2)](+). After 2 h of dynamic imaging, both block and nonblock mice were sacrificed to collect select organs at the 2-h time point. Although the uptake is specific, as judged from the ratios of nonblock to block (2.36 with [(67)Ga(RGD-1)](+), 1.46 with [(67)Ga(RGD-2)](+)), both conjugates display high uptake in blood. CONCLUSIONS We have successfully synthesized and applied the first bifunctional versions of H(2)dedpa for conjugation to a targeting vector and subsequent imaging of the corresponding conjugates.


Journal of the American Chemical Society | 2012

Gd(DOTAla): A Single Amino Acid Gd-complex as a Modular Tool for High Relaxivity MR Contrast Agent Development

Eszter Boros; Miloslav Polasek; Zhaoda Zhang; Peter Caravan

MR imaging at high magnetic fields benefits from an increased signal-to-noise ratio; however T(1)-based MR contrast agents show decreasing relaxivity (r(1)) at higher fields. High field, high relaxivity contrast agents can be designed by carefully controlling the rotational dynamics of the molecule. To this end, we investigated applications of the alanine analogue of Gd(DOTA), Gd(DOTAla). Fmoc-protected DOTAla suitable for solid phase peptide synthesis was synthesized and integrated into polypeptide structures. Gd(III) coordination results in very rigid attachment of the metal chelate to the peptide backbone through both the amino acid side chain and coordination of the amide carbonyl. Linear and cyclic monomers (GdL1, GdC1), dimers (Gd(2)L2, Gd(2)C2), and trimers (Gd(3)L3, Gd(3)C3) were prepared and relaxivities were determined at different field strengths ranging from 0.47 to 11.7 T. Amide carbonyl coordination was indirectly confirmed by determination of the hydration number q for the EuL1 integrated into a peptide backbone, q = 0.96 ± 0.09. The water residency time of GdL1 at 37 °C was optimal for relaxivity, τ(M) = 17 ± 2 ns. Increased molecular size leads to increased per Gd relaxivity (from r(1) = 7.5 for GdL1 to 12.9 mM(-1) s(-1) for Gd(3)L3 at 1.4 T, 37 °C). The cyclic, multimeric derivatives exhibited slightly higher relaxivities than the corresponding linearized multimers (Gd(2)C2: r(1) = 10.5 mM(-1) s(-1) versus Gd(2)C2-red r(1) = 9 mM(-1) s(-1) at 1.4 T, 37 °C). Overall, all six synthesized Gd complexes had higher relaxivities at low, intermediate, and high fields than the clinically used small molecule contrast agent [Gd(HP-DO3A)(H(2)O)].


Inorganic Chemistry | 2012

Evaluation of the H2dedpa Scaffold and its cRGDyK Conjugates for Labeling with 64Cu

Eszter Boros; Jacqueline F. Cawthray; Cara L. Ferreira; Brian O. Patrick; Michael J. Adam; Chris Orvig

Studies of the acyclic ligand scaffold H(2)dedpa and its derivatives with the peptide cRGDyK for application in copper radiopharmaceuticals are described. Previously shown to be a superb ligand for (67/68)Ga, the chelate is now shown to coordinate (64)Cu in its derivatized and nonderivatized forms rapidly under mild reaction conditions (10 min, RT, pH 5.5 10 mM sodium acetate buffered solution). The hexadentate, distorted octahedral coordination of H(2)dedpa is confirmed in the corresponding solid state X-ray crystal structure of [Cu(dedpa)]. Cyclic voltammetry determined the reduction potential of [Cu(dedpa)] to be below values found for common bioreductants. Reduction and reoxidation were irreversible but reproducible, indicating a potential change of coordination mode upon reduction of Cu(II) to Cu(I). The thermodynamic stability constant log K(CuL) was determined to be 19.16(5), comparable to other frequently used (64)Cu chelates. Serum stability of the (64)Cu labeled chelate revealed only 3% transchelation/association to serum proteins after 2 h, while the conjugates reveal 10% ([Cu(RGD1)]) and 6% ([Cu(RGD2)]) transchelation at the same time point.


Molecular Pharmaceutics | 2014

Pycup—A Bifunctional, Cage-like Ligand for 64Cu Radiolabeling

Eszter Boros; Elena V. Rybak-Akimova; Jason P. Holland; Tyson A. Rietz; Nicholas J. Rotile; Francesco Blasi; Helen Day; Reza Latifi; Peter Caravan

In developing targeted probes for positron emission tomography (PET) based on (64)Cu, stable complexation of the radiometal is key, and a flexible handle for bioconjugation is highly advantageous. Here, we present the synthesis and characterization of the chelator pycup and four derivatives. Pycup is a cross-bridged cyclam derivative with a pyridyl donor atom integrated into the cross-bridge resulting in a pentadentate ligand. The pycup platform provides kinetic inertness toward (64)Cu dechelation and offers versatile bioconjugation chemistry. We varied the number and type of additional donor atoms by alkylation of the remaining two secondary amines, providing three model ligands, pycup2A, pycup1A1Bn, and pycup2Bn, in 3-4 synthetic steps from cyclam. All model copper complexes displayed very slow decomplexation in 5 M HCl and 90 °C (t1/2: 1.5 h for pycup1A1Bn, 2.7 h for pycup2A, 20.3 h for pycup2Bn). The single crystal crystal X-ray structure of the [Cu(pycup2Bn)](2+) complex showed that the copper was coordinated in a trigonal, bipyramidal manner. The corresponding radiochemical complexes were at least 94% stable in rat plasma after 24 h. Biodistribution studies conducted in Balb/c mice at 2 h postinjection of (64)Cu labeled pycup2A revealed low residual activity in kidney, liver, and blood pool with predominantly renal clearance observed. Pycup2A was readily conjugated to a fibrin-targeted peptide and labeled with (64)Cu for successful PET imaging of arterial thrombosis in a rat model, demonstrating the utility of our new chelator in vivo.


Bioconjugate Chemistry | 2012

68Ga Small Peptide Imaging: Comparison of NOTA and PCTA

Cara L. Ferreira; Donald Yapp; Derek Mandel; Rajanvir K. Gill; Eszter Boros; May Q. Wong; Paul Jurek; Garry E. Kiefer

In this study, a bifunctional version of the chelate PCTA was compared to the analogous NOTA derivative for peptide conjugation, (68)Ga radiolabeling, and small peptide imaging. Both p-SCN-Bn-PCTA and p-SCN-Bn-NOTA were conjugated to cyclo-RGDyK. The resulting conjugates, PCTA-RGD and NOTA-RGD, retained their affinity for the peptide target, the α(v)β(3) receptor. Both PCTA-RGD and NOTA-RGD could be radiolabeled with (68)Ga in >95% radiochemical yield (RCY) at room temperature within 5 min. For PCTA-RGD, higher effective specific activities, up to 55 MBq/nmol, could be achieved in 95% RCY with gentle heating at 40 °C. The (68)Ga-radiolabeled conjugates were >90% stable in serum and in the presence of excess apo-transferrin over 4 h; (68)Ga-PCTA-RGD did have slightly lower stability than (68)Ga-NOTA-RGD, 93 ± 2% compared to 98 ± 1%, at the 4 h time point. Finally, the tumor and nontarget organ uptake and clearance of (68)Ga-radiolabeled PCTA-RGD and NOTA-RGD was compared in mice bearing HT-29 colorectal tumor xenografts. Activity cleared quickly from the blood and muscle tissue with >90% and >70% of the initial activity cleared within the first 40 min, respectively. The majority of activity was observed in the kidney, liver, and tumor tissue. The observed tumor uptake was specific with up to 75% of the tumor uptake blocked when the mice were preinjected with 160 nmol (100 μg) of unlabeled peptide. Uptake observed in the blocked tumors was not significantly different than the background activity observed in muscle tissue. The only significant difference between the two (68)Ga-radiolabeled bioconjugates in vivo was the kidney uptake. (68)Ga-radiolabeled PCTA-RGD had significantly lower (p < 0.05) kidney uptake (1.1 ± 0.5%) at 2 h postinjection compared to (68)Ga-radiolabeled NOTA-RGD (2.7 ± 1.3%). Overall, (68)Ga-radiolabeled PCTA-RGD and NOTA-RGD performed similarly, but the lower kidney uptake for (68)Ga-radiolabeled PCTA-RGD may be advantageous in some imaging applications.


Nuclear Medicine and Biology | 2011

New Ga derivatives of the H2dedpa scaffold with improved clearance and persistent heart uptake

Eszter Boros; Cara L. Ferreira; Brian O. Patrick; Michael J. Adam; Chris Orvig

Recent advances in positron emission tomography (PET)/computed tomography have fueled the development of new PET-isotope-based agents for myocardial perfusion imaging. (68)Ga, a generator-produced PET isotope, is an attractive radionuclide for developing a (68)Ga-based cardiac imaging agent. We have synthesized seven new chelate systems based on our previously reported 1,2-[{6-(carboxylato-)pyridin-2-yl}methylamino]ethane (H(2)dedpa) scaffold. These ligands form lipophilic, cationic complexes upon coordination of (67/68)Ga(III) under mild, direct labeling conditions within 10 min at room temperature. The corresponding cold complexes were also synthesized, and the solid-state structure of one of the complexes, [Ga(19)][ClO(4)], was determined. All compounds were investigated for in vitro stability against transferrin, and log P values were determined. In vivo biodistribution studies in mice showed that four of the seven investigated complexes provided greatly improved blood, lung and kidney clearance compared to previously reported derivatives. Two complexes with log P>1.1 exhibited persistent heart uptake over the course of 2 h above 1% ID/g.


Bioconjugate Chemistry | 2016

Bioorthogonal Fluorophore Linked DFO-Technology Enabling Facile Chelator Quantification and Multimodal Imaging of Antibodies.

Labros G. Meimetis; Eszter Boros; Jonathan C. T. Carlson; Chongzhao Ran; Peter Caravan; Ralph Weissleder

Herein we describe the development and application of a bioorthogonal fluorogenic chelate linker that can be used for facile creation of labeled imaging agents. The chelate linker is based on the trans-cyclooctene(TCO)-tetrazine(Tz) chemistry platform and incorporates deferoxamine (DFO) as a (89)Zr PET tracer and a BODIPY fluorophore for multimodal imaging. The rapid (<3 min) ligation between mAb-TCO and Tz-BODIPY-DFO chelator is monitored using fluorescence and allows for determination of labeling completion. Utilizing BODIPY as the linker between mAb and DFO facilitates in chelator quantification using spectrophotometry, allowing for an alternative to traditional methods (mass and isotope dilution assay). Radiolabeling with (89)Zr to form (89)Zr-DFO-BODIPY-trastuzumab was found to be quantitative after incubation at room temperature for 1 h (1.5 mCi/mg specific activity). The cell binding assay using HER2+ (BT474) and HER2- (BT20) cell lines showed significant binding to (89)Zr-DFO-BODIPY-trastuzumab (6.45 ± 1.87% in BT474 versus 1.47 ± 0.39% in BT20). In vivo PET imaging of mice bearing BT20 or BT474 xenografts with (89)Zr-DFO-BODIPY-trastuzumab showed high tumor conspicuity, and biodistribution confirmed excellent, specific probe uptake of 237.3 ± 14.5% ID/g in BT474 xenografts compared to low, nonspecific probe uptake in BT20 xenografts (16.4 ± 5.6% ID/g) 96 h p.i. . Ex vivo fluorescence (465ex/520em) of selected tissues confirmed superb target localization and persistence of the fluorescence of (89)Zr-DFO-BODIPY-trastuzumab. The described platform is universally adaptable for simple antibody labeling.


Dalton Transactions | 2011

One to chelate them all: investigation of a versatile, bifunctional chelator for 64Cu, 99mTc, Re and Co.

Eszter Boros; Yi-Heng Scott Lin; Cara L. Ferreira; Brian O. Patrick; Urs O. Häfeli; Michael J. Adam; Chris Orvig

We describe the synthesis of the dip (di-picolyl-carboxylate) bifunctional chelator system, capable of fast coordination of Cu(2+), (64)Cu(2+) and Co(2+), as well as the [M(CO)(3)](+)-core (M = (99m)Tc, Re); it displays a variety of binding modes--tridentate when protected, tetradentate when deprotected. Syntheses of both the benzyl-nitro derivative and the benzyl-amino derivatives are described. The latter was coupled to biotin to show the viability of the system for functionalization with biomolecules. Besides coordination chemistry with stable isotopes, we also present labelling data with (64)Cu and (99m)Tc, as well as in vitro stability studies.


Journal of Medicinal Chemistry | 2013

Structure-relaxivity relationships of serum albumin targeted MRI probes based on a single amino acid Gd complex.

Eszter Boros; Peter Caravan

The Gd(III) complex of DO3A-N-α-aminopropionate, Gd(DOTAla), was used to generate a small library of putative MRI probes targeted to human serum albumin (HSA). Ten compounds were synthesized via multistep organic synthesis, and the corresponding Gd complexes were investigated for their affinity to HSA, lipophilicity, and relaxivity in the absence and presence of HSA. Negative charge and moderate lipophilicity correlate with increased HSA affinity and relaxivity.

Collaboration


Dive into the Eszter Boros's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chris Orvig

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Brian O. Patrick

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric W. Price

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Jacqueline F. Cawthray

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Donald Yapp

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge