Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ethan G. Geier is active.

Publication


Featured researches published by Ethan G. Geier.


The Journal of Neuroscience | 2010

Role of the Copper Transporter, CTR1, in Platinum-Induced Ototoxicity

Swati S. More; Omar Akil; Alexandra G. Ianculescu; Ethan G. Geier; Lawrence R. Lustig; Kathleen M. Giacomini

The goal of this study was to determine the role of an influx copper transporter, CTR1, in the ototoxicity induced by cisplatin, a potent anticancer platinum analog used in the treatment of a variety of solid tumors. As determined through reverse transcriptase-PCR (RT-PCR), quantitative RT-PCR, Western blot, and immunohistochemistry, mouse CTR1 (Ctr1) was found to be abundantly expressed and highly localized at the primary sites of cisplatin toxicity in the inner ear, mainly outer hair cells (OHCs), inner hair cells, stria vascularis, spiral ganglia, and surrounding nerves in the mouse cochlea. A CTR1 substrate, copper sulfate, decreased the uptake and cytotoxicity of cisplatin in HEI-OC1, a cell line that expresses many molecular markers reminiscent of OHCs. Small interfering RNA-mediated knockdown of Ctr1 in this cell line caused a corresponding decrease in cisplatin uptake. In mice, intratympanic administration of copper sulfate 30 min before intraperitoneal administration of cisplatin was found to prevent hearing loss at click stimulus and 8, 16, and 32 kHz frequencies. To date, the utility of cisplatin remains severely limited because of its ototoxic effects. The studies described in this report suggest that cisplatin-induced ototoxicity and cochlear uptake can be modulated by administration of a CTR1 inhibitor, copper sulfate. The possibility of local administration of CTR1 inhibitors during cisplatin therapy as a means of otoprotection is thereby raised.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Structure-based discovery of prescription drugs that interact with the norepinephrine transporter, NET

Avner Schlessinger; Ethan G. Geier; Hao Fan; John J. Irwin; Brian K. Shoichet; Kathleen M. Giacomini; Andrej Sali

The norepinephrine transporter (NET) transports norepinephrine from the synapse into presynaptic neurons, where norepinephrine regulates signaling pathways associated with cardiovascular effects and behavioral traits via binding to various receptors (e.g., β2-adrenergic receptor). NET is a known target for a variety of prescription drugs, including antidepressants and psychostimulants, and may mediate off-target effects of other prescription drugs. Here, we identify prescription drugs that bind NET, using virtual ligand screening followed by experimental validation of predicted ligands. We began by constructing a comparative structural model of NET based on its alignment to the atomic structure of a prokaryotic NET homolog, the leucine transporter LeuT. The modeled binding site was validated by confirming that known NET ligands can be docked favorably compared to nonbinding molecules. We then computationally screened 6,436 drugs from the Kyoto Encyclopedia of Genes and Genomes (KEGG DRUG) against the NET model. Ten of the 18 high-scoring drugs tested experimentally were found to be NET inhibitors; five of these were chemically novel ligands of NET. These results may rationalize the efficacy of several sympathetic (tuaminoheptane) and antidepressant (tranylcypromine) drugs, as well as side effects of diabetes (phenformin) and Alzheimer’s (talsaclidine) drugs. The observations highlight the utility of virtual screening against a comparative model, even when the target shares less than 30% sequence identity with its template structure and no known ligands in the primary binding site.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Structure-based ligand discovery for the Large-neutral Amino Acid Transporter 1, LAT-1

Ethan G. Geier; Avner Schlessinger; Hao Fan; Jonathan E. Gable; John J. Irwin; Andrej Sali; Kathleen M. Giacomini

The Large-neutral Amino Acid Transporter 1 (LAT-1)—a sodium-independent exchanger of amino acids, thyroid hormones, and prescription drugs—is highly expressed in the blood–brain barrier and various types of cancer. LAT-1 plays an important role in cancer development as well as in mediating drug and nutrient delivery across the blood–brain barrier, making it a key drug target. Here, we identify four LAT-1 ligands, including one chemically novel substrate, by comparative modeling, virtual screening, and experimental validation. These results may rationalize the enhanced brain permeability of two drugs, including the anticancer agent acivicin. Finally, two of our hits inhibited proliferation of a cancer cell line by distinct mechanisms, providing useful chemical tools to characterize the role of LAT-1 in cancer metabolism.


Biochemistry | 2008

The Interplay between Size, Morphology, Stability, and Functionality of High-Density Lipoprotein Subclasses

Giorgio Cavigiolio; Baohai Shao; Ethan G. Geier; Gang Ren; Jay W. Heinecke; Michael N. Oda

High-density lipoprotein (HDL) mediates reverse cholesterol transport (RCT), wherein excess cholesterol is conveyed from peripheral tissues to the liver and steroidogenic organs. During this process HDL continually transitions between subclass sizes, each with unique biological activities. For instance, RCT is initiated by the interaction of lipid-free/lipid-poor apolipoprotein A-I (apoA-I) with ABCA1, a membrane-associated lipid transporter, to form nascent HDL. Because nearly all circulating apoA-I is lipid-bound, the source of lipid-free/lipid-poor apoA-I is unclear. Lecithin:cholesterol acyltransferase (LCAT) then drives the conversion of nascent HDL to spherical HDL by catalyzing cholesterol esterification, an essential step in RCT. To investigate the relationship between HDL particle size and events critical to RCT such as LCAT activation and lipid-free apoA-I production for ABCA1 interaction, we reconstituted five subclasses of HDL particles (rHDL of 7.8, 8.4, 9.6, 12.2, and 17.0 nm in diameter, respectively) using various molar ratios of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, free cholesterol, and apoA-I. Kinetic analyses of this comprehensive array of rHDL particles suggest that apoA-I stoichiometry in rHDL is a critical factor governing LCAT activation. Electron microscopy revealed specific morphological differences in the HDL subclasses that may affect functionality. Furthermore, stability measurements demonstrated that the previously uncharacterized 8.4 nm rHDL particles rapidly convert to 7.8 nm particles, concomitant with the dissociation of lipid-free/lipid-poor apoA-I. Thus, lipid-free/lipid-poor apoA-I generated by the remodeling of HDL may be an essential intermediate in RCT and HDLs in vivo maturation.


Journal of Biological Chemistry | 2010

Exchange of Apolipoprotein A-I between Lipid-associated and Lipid-free States A POTENTIAL TARGET FOR OXIDATIVE GENERATION OF DYSFUNCTIONAL HIGH DENSITY LIPOPROTEINS

Giorgio Cavigiolio; Ethan G. Geier; Baohai Shao; Jay W. Heinecke; Michael N. Oda

An important event in cholesterol metabolism is the efflux of cellular cholesterol by apolipoprotein A-I (apoA-I), the major protein of high density lipoproteins (HDL). Lipid-free apoA-I is the preferred substrate for ATP-binding cassette A1, which promotes cholesterol efflux from macrophage foam cells in the arterial wall. However, the vast majority of apoA-I in plasma is associated with HDL, and the mechanisms for the generation of lipid-free apoA-I remain poorly understood. In the current study, we used fluorescently labeled apoA-I that exhibits a distinct fluorescence emission spectrum when in different states of lipid association to establish the kinetics of apoA-I transition between the lipid-associated and lipid-free states. This approach characterized the spontaneous and rapid exchange of apoA-I between the lipid-associated and lipid-free states. In contrast, the kinetics of apoA-I exchange were significantly reduced when apoA-I on HDL was cross-linked with a bi-functional reagent or oxidized by myeloperoxidase. Our observations support the hypothesis that oxidative damage to apoA-I by myeloperoxidase limits the ability of apoA-I to be liberated in a lipid-free form from HDL. This impairment of apoA-I exchange reaction may be a trait of dysfunctional HDL contributing to reduced ATP-binding cassette A1-mediated cholesterol efflux and atherosclerosis.


Journal of Biological Chemistry | 2010

The exchange of apolipoprotein A-I between the lipid-associated and the lipid-free states: a potential target for oxidative generation of dysfunctional HDL

Giorgio Cavigiolio; Ethan G. Geier; Baohai Shao; Jay W. Heinecke; Michael N. Oda

An important event in cholesterol metabolism is the efflux of cellular cholesterol by apolipoprotein A-I (apoA-I), the major protein of high density lipoproteins (HDL). Lipid-free apoA-I is the preferred substrate for ATP-binding cassette A1, which promotes cholesterol efflux from macrophage foam cells in the arterial wall. However, the vast majority of apoA-I in plasma is associated with HDL, and the mechanisms for the generation of lipid-free apoA-I remain poorly understood. In the current study, we used fluorescently labeled apoA-I that exhibits a distinct fluorescence emission spectrum when in different states of lipid association to establish the kinetics of apoA-I transition between the lipid-associated and lipid-free states. This approach characterized the spontaneous and rapid exchange of apoA-I between the lipid-associated and lipid-free states. In contrast, the kinetics of apoA-I exchange were significantly reduced when apoA-I on HDL was cross-linked with a bi-functional reagent or oxidized by myeloperoxidase. Our observations support the hypothesis that oxidative damage to apoA-I by myeloperoxidase limits the ability of apoA-I to be liberated in a lipid-free form from HDL. This impairment of apoA-I exchange reaction may be a trait of dysfunctional HDL contributing to reduced ATP-binding cassette A1-mediated cholesterol efflux and atherosclerosis.


Clinical Pharmacology & Therapeutics | 2013

Profiling Solute Carrier Transporters in the Human Blood–Brain Barrier

Ethan G. Geier; Eugene C. Chen; Amy Webb; Audrey C. Papp; Sook Wah Yee; Wolfgang Sadee; Kathleen M. Giacomini

The neuroprotective function of the blood–brain barrier (BBB) presents a major challenge for drug delivery to the central nervous system (CNS). Critical to this function, BBB membrane transporters include the ATP‐binding cassette (ABC) transporters, which limit drug penetration across the BBB, and the less‐well‐studied solute carrier (SLC) transporters. In this work, expression profiling of 359 SLC transporters, comparative expression analysis with kidney and liver, and immunoassays in brain microvessels (BMVs) identified previously unknown transporters at the human BBB.


Clinical Cancer Research | 2011

Vorinostat Increases Expression of Functional Norepinephrine Transporter in Neuroblastoma In Vitro and In Vivo Model Systems

Swati S. More; Melissa Itsara; Xiaodong Yang; Ethan G. Geier; Michelle K. Tadano; Youngho Seo; Henry F. VanBrocklin; William A. Weiss; Sabine Mueller; Daphne A. Haas-Kogan; Steven G. DuBois; Katherine K. Matthay; Kathleen M. Giacomini

Purpose: Histone deacetylase (HDAC) inhibition causes transcriptional activation or repression of several genes that in turn can influence the biodistribution of other chemotherapeutic agents. Here, we hypothesize that the combination of vorinostat, a HDAC inhibitor, with 131I-meta-iodobenzylguanidine (MIBG) would lead to preferential accumulation of the latter in neuroblastoma (NB) tumors via increased expression of the human norepinephrine transporter (NET). Experimental Design:In vitro and in vivo experiments examined the effect of vorinostat on the expression of NET, an uptake transporter for 131I-MIBG. Human NB cell lines (Kelly and SH-SY-5Y) and NB1691-luc mouse xenografts were employed. The upregulated NET protein was characterized for its effect on 123I-MIBG biodistribution. Results: Preincubation of NB cell lines, Kelly, and SH-SY-5Y, with vorinostat caused dose-dependent increases in NET mRNA and protein levels. Accompanying this was a corresponding dose-dependent increase in MIBG uptake in NB cell lines. Four- and 2.5-fold increases were observed in Kelly and SH-SY-5Y cells, respectively, pretreated with vorinostat in comparison to untreated cells. Similarly, NB xenografts, created by intravenous tail vein injection of NB1691-luc, and harvested from nude mice livers treated with vorinostat (150 mg/kg i.p.) showed substantial increases in NET protein expression. Maximal effect of vorinostat pretreatment in NB xenografts on 123I-MIBG biodistribution was observed in tumors that exhibited enhanced uptake in vorinostat-treated [0.062 ± 0.011 μCi/(mg tissue-dose injected)] vs. -untreated mice [0.022 ± 0.003 μCi/(mg tissue-dose injected); P < 0.05]. Conclusions: The results of our study provide preclinical evidence that vorinostat treatment can enhance NB therapy with 131I-MIBG. Clin Cancer Res; 17(8); 2339–49. ©2011 AACR.


Molecular Pharmaceutics | 2013

Gene Expression Profiling of Transporters in the Solute Carrier and ATP-Binding Cassette Superfamilies in Human Eye Substructures

Amber Dahlin; Ethan G. Geier; Sophie L. Stocker; Cheryl D. Cropp; Elena Grigorenko; Michele M. Bloomer; Julie Siegenthaler; Lu Xu; Anthony S. Basile; Diane Tang-Liu; Kathleen M. Giacomini

The barrier epithelia of the cornea and retina control drug and nutrient access to various compartments of the human eye. While ocular transporters are likely to play a critical role in homeostasis and drug delivery, little is known about their expression, localization and function. In this study, the mRNA expression levels of 445 transporters, metabolic enzymes, transcription factors and nuclear receptors were profiled in five regions of the human eye: cornea, iris, ciliary body, choroid and retina. Through RNA expression profiling and immunohistochemistry, several transporters were identified as putative targets for drug transport in ocular tissues. Our analysis identified SLC22A7 (OAT2), a carrier for the antiviral drug acyclovir, in the corneal epithelium, in addition to ABCG2 (BCRP), an important xenobiotic efflux pump, in retinal nerve fibers and the retinal pigment epithelium. Collectively, our results provide an understanding of the transporters that serve to maintain ocular homeostasis and which may be potential targets for drug delivery to deep compartments of the eye.


Molecular Pharmacology | 2015

Targeted disruption of organic cation transporter 3 attenuates the pharmacologic response to metformin

Eugene C. Chen; Xiaomin Liang; Sook Wah Yee; Ethan G. Geier; Sophie L. Stocker; Ligong Chen; Kathleen M. Giacomini

Metformin, the most widely prescribed antidiabetic drug, requires transporters to enter tissues involved in its pharmacologic action, including liver, kidney, and peripheral tissues. Organic cation transporter 3 (OCT3, SLC22A3), expressed ubiquitously, transports metformin, but its in vivo role in metformin response is not known. Using Oct3 knockout mice, the role of the transporter in metformin pharmacokinetics and pharmacodynamics was determined. After an intravenous dose of metformin, a 2-fold decrease in the apparent volume of distribution and clearance was observed in knockout compared with wild-type mice (P < 0.001), indicating an important role of OCT3 in tissue distribution and elimination of the drug. After oral doses, a significantly lower bioavailability was observed in knockout compared with wild-type mice (0.27 versus 0.58, P < 0.001). Importantly, metformin’s effect on the plasma glucose concentration-time curve was reduced in knockout compared with wild-type mice (12 versus 30% reduction, respectively, P < 0.05) along with its accumulation in skeletal muscle and adipose tissue (P < 0.05). Furthermore, the effect of metformin on phosphorylation of AMP activated protein kinase, and expression of glucose transporter type 4 was absent in the adipose tissue of Oct3−/− mice. Additional analysis revealed that an OCT3 3′ untranslated region variant was associated with reduced activity in luciferase assays and reduced response to metformin in 57 healthy volunteers. These findings suggest that OCT3 plays an important role in the absorption and elimination of metformin and that the transporter is a critical determinant of metformin bioavailability, clearance, and pharmacologic action.

Collaboration


Dive into the Ethan G. Geier's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luke W. Bonham

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Giorgio Cavigiolio

Children's Hospital Oakland Research Institute

View shared research outputs
Top Co-Authors

Avatar

Michael N. Oda

Children's Hospital Oakland Research Institute

View shared research outputs
Top Co-Authors

Avatar

Baohai Shao

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge